

IDS X64

Installer Manual

Contents

1.	Introduction to the IDS X64	
1.1	Features of the IDS X64	10
2.	Installation and Wiring	11
2.1	Installation Requirements	
2.1.1	End-of-Line Resistors	
2.1.2	Box Tamper Input	
2.1.3	Connecting the Telephone Communicator - Advanced	
2.1.4	Programmable Outputs	
2.1.5	Key-Switch or Remote Control Unit	
2.2	Installing a Zone Expander Module	
2.3	IDS Remote Receiver	
2.4	Radio Transmitter Connection	13
3.	Hardware Default Switch	13
4.	Enrolling Keypads and Other Bus-wired Peripherals	
4.1	Replacing a Damaged Keypad / Bus-wired Peripheral	
4.2	Defaulting Keypads	15
5.	Event Log	15
6.	Access Codes	15
6.1	Normal User Code	15
6.1.1	Master User Code	
6.1.2	Maid's Code (Arm to Disarm Code)	
6.1.3	Duress Code	
6.2	Installer Code	
6.3 6.4	Maintenance Code Download Code16	16
7.	How to Read Location Values	17
8.	Programming of the Panel	18
8.1	Entering Installer or Maintenance Mode	
8.2	Programming Standard Locations	
8.3	Programming Extended Locations	
8.3.1.	Using the String Method	
8.3.2.	Using Sub-locations	
8.4	Programming a Location or Sub-location with a Bitmap	21
9.	Programming Location Summary	22
9.1	Zones	
9.2	Global Setup	
9.3	Daylight Savings	
9.4	Miscellaneous - Advanced	
9.5	Communications Setup - Advanced	
9.6	Phone Numbers	40

9.7	Zone Properties	43
9.8	No Movement - Advanced	45
9.9	Auto Arm - Advanced	47
9.10	Security Codes	49
9.11	Partition Options	50
9.12	Delays	
9.13	Options to Configure Keypads	54
9.14	Reporting Codes - Advanced	57
9.14.1	Global Reporting Codes	57
9.14.2	Zone Reporting Codes	59
9.14.3	Partition Reporting Codes	63
9.14.4	User Reporting Codes	65
9.15	Programmable Outputs	67
9.15.1	Output Disarm Clear	67
9.15.2	Partition Event Driven Outputs - Advanced	69
9.15.3	Zone Programmable Output Events	72
9.15.4	Output Pulse Timing - Advanced	
9.15.5	Output Scheduling On Time - Advanced	
9.15.6	Output Scheduling Off Time - Advanced	75
9.15.7	Output Scheduling On/Off Days - Advanced	76
9.16	Event Reporting Options - Advanced	78
10.	Keypad Information	84
11.	Panel Information	84
Index of	f Programming Locations	85
Cross R	Reference Lookup	94
Program	nming Quick Reference Guide	95

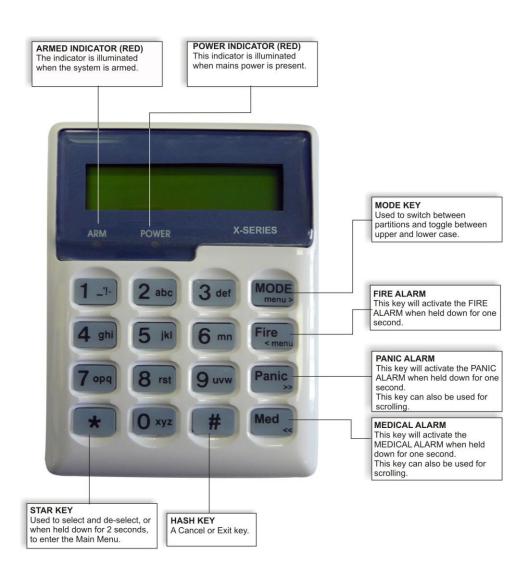
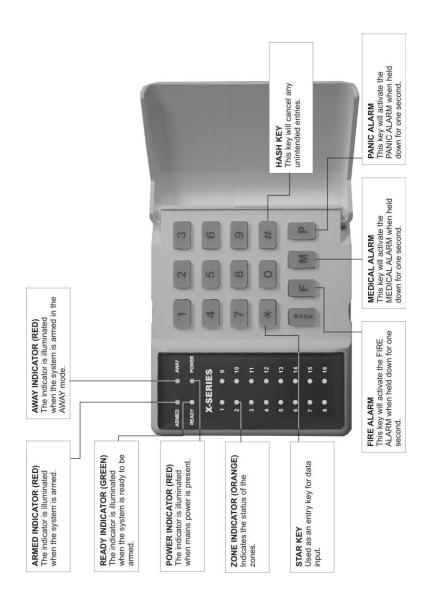
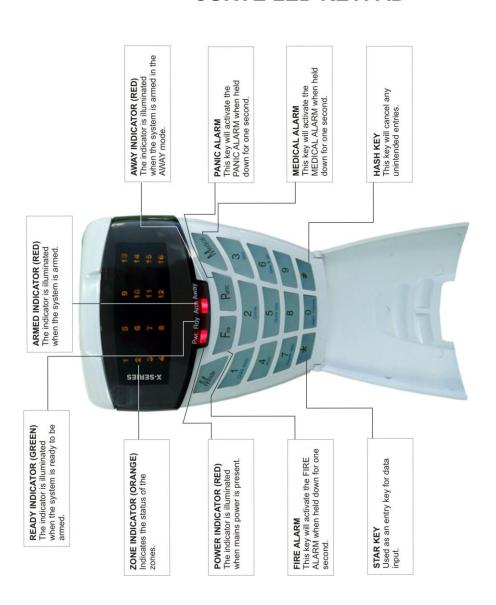

Figures

Figure 1: Connection Diagram without Tamper per Zone	11
Figure 2: How Telephone Numbers Work	41
Figure 3: Paging Indication on the Classic Keypad	50
Figure 4: Paging Indication on the Curved Keypad	50

Tables

Table 1: Values Represented by each Zone LED	
Table 2: Binary Coded Decimal Four Digit Display	
Table 3: Hexadecimal Values	
Table 4: Defaulting Data	. 22
Table 5: Zone Types	
Table 6: Zone Types in String Format	. 26
Table 7: Zone Types in Sub-location Format	. 26
Table 8: Loop Response Time Data	. 27
Table 9: Global Options Data	. 28
Table 10: Trouble Display Options	. 30
Table 11: Number of Digits Data	. 33
Table 12: Month Data	. 33
Table 13: Day of Week Data	
Table 14: Week of Month Data	. 34
Table 15: Auto Test Interval Data	. 35
Table 16: Download Code Disable Data	. 36
Table 17: Default Switch Disable Data	. 36
Table 18: Communications Format Data	
Table 19: Reporting Communications Options Data	. 38
Table 20: Download Options Data	
Table 21: Phone Number Example	. 41
Table 22: Zone Type Properties Data	. 44
Table 23: Arm/ Disarm Days Data	. 48
Table 24: Zones per Partition Page	. 50
Table 25: Partition Arm Options Data	. 52
Table 26: Extended Partition Options Data	. 53
Table 27: Keypad Options Data	
Table 28: Clear Programmable Onboard Outputs Data	. 68
Table 29: Clear Programmable Zone Expander Outputs Data	. 68
Table 30: Clear Programmable Keypad Outputs Data	. 68
Table 31: Partition Programmable Output Events for Locations 390-410	. 69
Table 32: Partition Programmable Output Events for Locations 411-414	. 70
Table 33: Output Address Physical Mapping Data	. 70
Table 34: Output Actions Data	. 71
Table 35: Default Programmable Events Data	. 71
Table 36: Default Programmable Events Data with no Default Action	
Table 37: Global Programmable Output Events Default Data	. 73
Table 38: Output Scheduling On/Off Days Data	
Table 39: Outputs per Location	
Table 40: Split Reporting Zones Bitmap Data	
Table 41: Global Split Reporting 1 Bitmap Data	. 79
Table 42: Global Split Reporting 2 Bitmap Data	. 80
Table 43: Global Split Reporting 3 Bitmap Data	. 81
Table 44: Global Split Reporting 4 Bitmap Data	
Table 45: Split Reporting Partitions 1-8 Data	


CLASSIC LCD KEYPAD


CURVE LCD KEYPAD

CLASSIC LED KEYPAD

CURVE LED KEYPAD

Introduction to the IDS X64 1.

Thank you for purchasing an IDS Alarm Panel.

The IDS X64 is a versatile, Bylaw 25 compliant, expandable Alarm Panel. It has up to 8 partitions and can be expanded from 8-64 zones. Most features are configurable and may be programmed directly through a keypad or via serial PC connection or telephone system, using the IDS Download Software and appropriate modem (P/N: 860-36-0001).

There are up to 64 programmable burglary zones, a dedicated panic zone, monitored siren output, auxiliary power output, and 5 onboard programmable outputs expandable to 25, which may be programmed to perform various trigger/switching functions.

For correct operation, the IDS X64 must be used in conjunction with the specified transformer / battery combination (ask your sales representative for a copy of the IDS Power Budget spreadsheet to identify your needs) and appropriate peripheral sensors and signalling devices.

NOTE:

X-SERIES products are not compatible with any previous IDS products, such as the IDS816 and IDS1632.

Features of the IDS X64 1.1

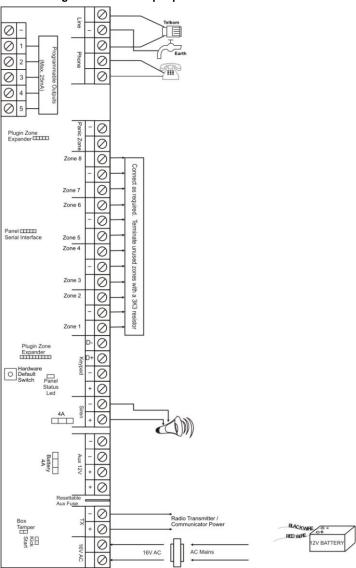
Zones and Partitions:

- \triangleright 8 onboard zones, expandable to 16 onboard zones with a X64 8-zone Plug-in Expander (P/N: 860-06-X-08PI) - A very cost-effective 16 zone solution
- Further expandable to 64 zones with the use of up to 6 bus-wired X64 8-zone Unpowered Expander modules (P/N: 860-06-X-08S) or 8 keypad zones - 1 per keypad
- 8 partitions
- 4 stay profiles per partition

Users:

- 128 users
- Options to set user codes as Master, Duress, Maid, Arm only, Disarm only or Programmable Output.

System Options:


- Tamper reporting per zone using double end-of-line resistors (12K and 4K7)
- \triangleright 5 programmable outputs on the Alarm Panel, expandable to 25 when using zone expanders (2 per expander), and keypads (1 per keypad)
- Event log (1000 events) date and time relative
- ⊳ Auto arm/disarm capability per partition and by day of the week.
- No movement auto arm and medical reporting
- Panel firmware installer upgradable via serial data cable
- Telephone communicator that supports Ademco, FBI, Silent Knight, Contact ID, and SIA
- Fax defeat/answering machine override
- Dual reporting provides for duplicated reporting to two independent central base stations
- Split reporting to report to either 1 of 2 dual reporting number pairs
- Comprehensive lightening protection
- **AAAAAAAA** Dynamic battery self test
- Low battery monitoring and cut-out circuit
- Dual power supply, with an independent battery charging circuit, means more onboard power for simplified alarm installation

2. Installation and Wiring

Please refer to: Figure 1: Connection Diagram without Tamper per Zone and familiarise yourself with the following sections.

The kick start jumper must be in-circuit when using only a battery (i.e. no AC). Simply short the pins out with a screwdriver, or use a jumper. Remove the short/jumper once the Panel Status LED lights up (indicating power up), as leaving it on disables the low battery cut-out.

Figure 1: Connection Diagram without Tamper per Zone

2.1 Installation Requirements

- A suitable transformer with an output voltage of 16 Vac ±10% with a 32VA minimum rating must be used. A 48VA transformer is recommended for larger installations.
- A 12V sealed lead acid battery with a minimum capacity of 7AH must be used. The backup period after mains failure will depend on the number of keypads, sensors, and bus-wired peripheral devices connected to the system.
- Connect a 12V self-driven siren or piezo siren (not a horn speaker) to the siren output.
- The panel can supply a total continuous current of 750mA to bus-wired peripheral devices such as keypads, remotes, receivers, passives etc; from Aux 12V terminals.

2.1.1 End-of-Line Resistors

- All zones, including Panic zones, are end-of-line supervised.
- All zones, whether they are used or unused, need to be terminated with a 3K3 resistor (resistor colour-code is orange, orange, red, gold).
- For maximum security, the end-of-line resistor must be placed inside or as close to the sensor as possible.
- For tamper by zone, 4K7 and 12K end-of- line resistors must be connected instead of a single 3K3 resistor.
- If the panel is unarmed and a tamper condition occurs, the siren will not sound but a tamper condition will be reported if it is enabled to do so. See Table 40 to enable/disable this option.
- If the panel is armed and a tamper condition occurs, an audible alarm will register, and a tamper condition AND zone violation will be reported.

2.1.2 Box Tamper Input

The box tamper input does not require an end-of-line resistor, but does require a normally closed contact. The panel is shipped with the box tamper input bypassed with tamper. To use it, remove the jumper and connect a normally closed contact onto the terminals. Refer to Figure 1 for the box tamper position on the Alarm Panel.

2.1.3 Connecting the Telephone Communicator - Advanced

Refer to: Figure 1: Connection Diagram without Tamper per Zone.

- For optimum lightning protection, connect a low resistance earth to the communicator earth input.
- Always connect the telephone communicator in line seizure mode and never in parallel with the telephone.
- > Ensure the telephone receiver is connected to the communicator terminals marked "phone" and the incoming line to the terminals marked "line".

2.1.4 Programmable Outputs

An IDS Relay Board (P/N: 861-004) must be used when any device requiring a current greater than 50mA is connected to a programmable output. The programmable output circuitry consists of a 12V source with a 56 Ω series resistor. Current sink is via a 1, 000 Ω resistor to ground. The maximum output voltage is 13.6Vdc. The maximum output current is 25mA. Programmable outputs are primarily connected for radio transmitter. However, they are also used for connecting, LEDs, sirens, bus-wired peripherals, etc.

2.1.5 Key-Switch or Remote Control Unit

A key-switch or non-IDS remote receiver may be connected to any zone to allow remote arm/disarm and remote panic capability.

- When using a key-switch or remote control unit, a 3K3 resistor must be connected between the zone input and ground.
- > Use only a spring-loaded momentary key-switch or non-latching remote control unit.

2.2 Installing a Zone Expander Module

When installing a zone expander module refer to the document supplied with the module. Note that up to 6 bus-wired, 8-zone expander modules (P/N: 860-06-X-08S) and 1 plug-in expander (P/N: 860-06-X-08Pl) may be added to the IDS X64 Alarm Panel. Zones 9-16 are reserved for the Plug-in Zone Expander module.

2.3 IDS Remote Receiver

Up to 4 IDS Remote Receivers (P/N: 860-07-X02-DI) may be connected to the keypad Bus. Using this facility allows remote arming and disarming of the panel while providing user identification for a maximum of 128 remotes.

For a full list of features and benefits of the receiver, please see the manual that comes with it.

2.4 Radio Transmitter Connection

When connecting a radio transmitter, use the TX terminal provided on the panel to supply power to the transmitter. This output is protected by a 4 Amp fuse.

Hardware Default Switch

Use the hardware default switch (refer to Figure 1) to return the panel to its factory default settings.

The procedure to default the panel is as follows:

- 1. Remove the battery and AC power from the panel
- 2. If you are only using a battery make sure that the kick-start jumper is in circuit
- 3. Hold down the default switch and reapply power to the panel (battery or AC)
- 4. Wait for the Panel Status LED to flash
- Release the default switch
- 6. Remove the kick-start jumper, if one was used
- 7. Defaulting is complete once the Panel Status LED starts flashing

The effects of applying the default:

- 1. Factory default values are restored to all locations
- 2. All attached keypad IDs are defaulted
- 3. The event log is not defaulted
- 4. The "system default" event is logged to the event log

NOTE:

The hardware default switch can be disabled in location 35.

See also: Defaulting the Panel or Master User Code – location 0.

4. Enrolling Keypads and Other Bus-wired Peripherals

Keypads must be enrolled on the system before they can be used. Keypads are allocated an ID in the order in which they are enrolled. To enrol a keypad:

- 1. Wire it to the keypad BUS
- 2. Press the [#] key

Repeat this process with the remaining keypads where more than 1 keypad is used. The first keypad enrolled will have an ID of 1, the second enrolled will have an ID of 2, the third an ID of 3 etc.

NOTE:

- All the zone and LEDs will flash on a keypad that does not have an ID.
- The POWER and READY LEDs will be on for a keypad that has an ID and no zone violations.
- Only the POWER LED will be on for a keypad that has an ID with a zone violation. The LED for that zone will also flash.

Trouble shooting

If the ID process, for an LED keypad, has failed zones 1-8, and zones 9-16 will flash alternately. At this point press the [#] key to retry.

If the flashing persists, try the following steps:

- Check all wiring
- 2. Check that you have not exceeded 8 keypads on the bus
- 3. Contact the IDS helpdesk for further support

NOTE:

To enrol other devices (IDS Remote Receivers or Zone Expanders); consult the installation manuals for those devices. The IDS X64 Alarm Panels can accept 6 zone expanders and 4 remote receivers.

4.1 Replacing a Damaged Keypad / Bus-wired Peripheral

To replace a damaged device (non-dipswitch – like a keypad):

- Disconnect only the faulty device.
- 2. Program a value of **[4]** into location 0 to free up all redundant IDs (previously unallocated IDs remain free), wait for approximately 10 seconds then continue to step 3.
- Connect the replacement device and enrol it by pressing [#] for keypads it will now be enrolled in the first available address.

NOTE:

- If other devices are disconnected (or damaged), at the time of performing step 2, their addresses will also be freed. Any new devices being enrolled will automatically be allocated addresses beginning from the lowest free address.
- When you free up the ID of the damaged unit, the panel settings, relevant to the ID, will be defaulted too. Therefore, the keypad will need to be re-added to a partition.
- If a new keypad was enrolled, go to location 243 to check the keypad's ID (1-8).

Solution

If there are problems with device IDs on a complex installation, do not assign IDs randomly, rather, at the end of the installation, default all device IDs and then enroll them in sequence.

To re-enrol a Zone Expander or a Remote Receiver (dipswitch); consult the installation instructions for the particular device.

4.2 Defaulting Keypads

To default the ID of an individual keypad:

- 1. Remove power to the keypad (or the whole panel if easier).
- 2. Hold down the [1] and [3] keys simultaneously until the beep (for at least 3 seconds).
- 3. Restore the power.
- 4. Wait for three seconds and then release the keys (there will not be a beep).
- 5. All the keypad LEDs will flash simultaneously indicating that the keypad has been de-registered
- 4. Wait for five seconds and ensure that the Panel Status LED on the panel is flashing.
- Press the [#] key to allocate a new ID to the defaulted keypad. Keypad IDs are allocated incrementally.
- The ID of any (correctly registered) keypad can be viewed in location 243 from the keypad of interest

To default the ID of ALL keypads:

1. Enter a value of [3] into location 0.

[INSTALLER CODE] [*] [0] [*] [3] [*]

- On pressing the final [*], wait a few seconds and ALL the keypad LEDs will begin flashing. (Do NOT press the [#] key at the end of this sequence, unless you wish the keypad you are using to be registered in the first address).
- 3. Re-enrol all keypads by pressing the **[#]** key on each keypad in the CORRECT sequence to ensure that keypad zone and partition allocation is as required by the user.

Event Log

A comprehensive log of the 1 000 most recent events is retained in the non-volatile EEPROM. The log may be retrieved using the up/download software, or on the LCD keypad. (See the LCD Keypad Manual or User Manual to see how to view the event log).

The IDS Download Software is available for Inhep account customers, at no cost, to collect your event logs via direct serial download, or via a modem.

6. Access Codes

The panel supports up to 128 users. The user codes can have various properties assigned to them. These properties allow the user codes to have different functions.

6.1 Normal User Code

A normal user code is used to arm/disarm the panel, and to access certain user options.

6.1.1 Master User Code

When assigned to a user, this property allows the user to act as a master user. The Master User Code has full access to programming all the user options. For a full list of user programmable options, refer to the X64 User Manual.

6.1.2 Maid's Code (Arm to Disarm Code)

This property may be used to limit access to the premises. A Maid's Code will only disarm the system if the same code was used for arming. If armed with a code other than this code, the system will view an attempt to disarm using a Maid's Code as an invalid entry. Any valid user code will disarm the system if it has been armed with a Maid's Code.

6.1.3 Duress Code

This property denotes a user code as a special code to be used in the unique situation where an intruder forces one to disarm the system "under duress".

When the **[DURESS CODE]** is entered, the Alarm Panel disarms normally - however a DURESS REPORTING CODE is transmitted to the monitoring company to inform them that you have been forced to disarm the Alarm Panel by an intruder.

It is advisable to choose a code that can easily be remembered by all family (or staff) members.

6.2 Installer Code

The Installer Code (location 197) is used by the installer to program and configure the Alarm Panel. It has full access to all installer mode menus as listed in this manual.

6.3 Maintenance Code

The Maintenance Code (location 199) acts in a similar way to the Installer Code, but it has limited access to installer menus. The default Maintenance Code is 8888, or 888888 for a 6-digit code. This code is used to access the following locations:

Locations 17 – 18 : Siren Time and Delay Locations 20 – 22 : Keypad Lockout and Sleep

Locations 25 – 31 : Daylight Savings

Locations 171 – 173 : No Movement, Auto Arm Locations 174 – 176 : No Movement, Medical Alarm

Locations 180 – 190 : Auto Arm Times

The assignment of this property to a user allows the relevant user to perform certain "maintenance" tasks that would ordinarily require the use of the installer code.

6.4 Download Code

The Download Code, location 198, (in conjunction with the Installer Code) is required for download access via the IDS Download Software. The default Download Code is 9999 or 9999999 for a 6-digit code.

NOTE:

It is possible to program location 34 to either allow or disallow defaulting of the Download Code.

7. How to Read Location Values

Values within a data program location will be displayed by the zone LEDs in binary coded decimal format i.e. zone LEDs 1-4 indicate units (ones) and zone LEDs 5-8 indicate tens (tens), and so on.

To read a binary value on the keypad, add up the values represented by each lit LED as shown in Table 1.

Table 1: Values Represented by each Zone LED

Zone LED	Value	Digit
Zone 1	1	
Zone 2	2	Units
Zone 3	4	UTIILS
Zone 4	8	

Zone LED	Value	Digit	
Zone 9	1		
Zone 10	2	Hundreds	
Zone 11	4	Hulluleus	
Zone 12	8		
•		•	

Zone 5	1	
Zone 6	2	Tens
Zone 7	4	rens
Zone 8	8	

Zone 13	1	
Zone 14	2	Thousands
Zone 15	4	inousands
Zone 16	8	

EXAMPLE:

Imagine the following zone LEDs are on: Zone 1, Zone 3 and Zone 5.

Units are represented by the sum of Zone 1 and Zone 3 (i.e. 1 + 4).

Tens of units are represented by the value of Zone 5 (i.e. 1 x ten).

Therefore, the displayed value is (1+4) + (10) = 15.

Values within a time program location are displayed in a similar format as per Table 2.

Table 2: Binary Coded Decimal Four Digit Display

Zone LED	Calculation	Unit	Zone LED	Calculation	Unit
1	(x 1 = 1)		9	(x 1 = 1)	
2	(x 2 = 0)	М	10	(x 2 = 2)	
3	(x 4 = 4)	IVI	11	(x 4 = 4)	0
4	(x 8 = 0)		12	(x 8 = 0)	

Mm:Ss = 45:36

5	(x 1 = 1)		13	(x 1 = 1)	
6	(x 2 = 0)		1/	(x 2 = 2)	
	, ,	m	14	/	S
/	(x 4 = 4)		15	(x 4 = 1)	
8	(x 8 = 0)		16	(x 8 = 0)	

M = LEDs 4 through 1 m = LEDs 5 through 8 S = LEDs 12 through 9 s = LEDs 16 through 13

Using an LCD keypad means that data and time information can be read directly without a need to convert.

8. Programming of the Panel

The X64 can be fully programmed using the X64 LED keypad; the system is optimised to use an LCD keypad. The following section describes how programming data is represented in the X64 and how to program it, specifically with the LED keypad.

For all programming procedures, the [*] key functions as the **<ENTER>** key and the **[#]** hash key functions as a **<CLEAR>** or an **<EXIT>** program key.

Invalid data entries are indicated by means of an error beep consisting of 3 short beeps of the keypad buzzer.

There are two location categories:

- > Standard locations which are single tiered and do not contain any sub-locations.
- Extended locations, which are double tiered and have strings or sub-locations depending on the installers programming preference.

Both standard and extended locations may contain further sub-categories referred to as bitmapped locations.

For both main categories, clear visual keypad prompts are provided, which aid the programming process.

NOTE:

When you use the [*] key to scroll through a bitmapped location, it will scroll through the pages. When using the [*] key to scroll through numbered locations, it will scroll through the bytes.

- Alpha-numeric locations (location 51 telephone number), will show 1 digit per press of the [*] key.
- Numeric locations (location 197 installers code), will show 2 digits per press of the [*] key.
- To view how the data is represented, please see Table 1.

Below are various programming symbols you will see throughout the manual:

Indicates programming a standard location

Indicates programming using the string method

Indicates programming a sub-location

Indicates programming a location/sub-location with a bitmap

Where a hexadecimal number must be programmed, use the [MODE] key as per Table 3.

Table 3: Hexadecimal Values

Hex Value	Decimal Value	Key Strokes
Α	10	[MODE] key then [0] key
В	11	[MODE] key then [1] key
С	12	[MODE] key then [2] key
D	13	[MODE] key then [3] key
Е	14	[MODE] key then [4] key
F	15	[MODE] key then [5] key

NOTE:

The hex values of **A-F** can be used for account codes. Only **B-F** can be used for telephone numbers. This means that for locations 50-54, **A** is NOT a hex number – but is rather used to CLEAR a telephone number.

8.1 Entering Installer or Maintenance Mode

The following steps show how to enter into installer or maintenance mode.

- 1. Ensure that all partitions are unarmed.
- 2. Press the [#] key followed by the [INSTALLER CODE] or the [MAINTENANCE CODE].
- The default installer code is 9999 or alternatively 999999 should a 6-digit default installer code have been used.
- 4. Press the [*] key and a long beep will confirm entry into program mode. If a correct code has been entered, the green READY LED will flash.

NOTE:

This will not work if the dialler is active at the time, or if one of the partitions are armed.

8.2 Programming Standard Locations

The following steps show how to program standard locations.

AB

- 1. Ensure the panel is in program mode the READY LED will be flashing.
- 2. Enter the **[LOCATION NO.]** of the program location you wish to view or change.
- 3. Press the [*] key, until the beep. The READY LED will become solid and the AWAY LED will flash.
- 4. The zone LEDs will display the data stored in the program location in binary format.
- 5. Enter the **[NEW DATA]** followed by the **[*]** key. A long beep will indicate a valid entry and the AWAY LED will turn off. The READY LED will flash.
- If you do not wish to change the data, press the [#] key. The READY LED will continue flashing and the AWAY LED will turn off.
- 7. Repeat steps 2 5 until all the necessary locations have been programmed.
- 8. Press the [#] key to exit program mode.
- 9. The READY LED will stop flashing and the panel will return to the standby mode.

When programming a standard location, any attempt to enter invalid data will result in an error beep (3 short beeps).

The AWAY LED will remain on after the error beeps. Re-enter the correct data. There is no need to press the **[#]** key.

EXAMPLE:

[INSTALLER CODE] [*] [0] [*] [VALUE] [*]

NOTE:

When you enter a standard location and press the [*] key, you will NOT be entering a sub-location – as there is no sub-location to enter. What will happen is that you will scroll through the information in that location. If you enter a digit, you will be changing the information stored in that position of the location, or the location itself.

EXAMPLE:

If you want to scroll through all the entries within a location with a LED keypad, you will input the following data:

[INSTALLER CODE] [*] [LOCATION NO.] [*] [*] [*] [*], etc.

Scrolling through with the [*] key will show you all the numbers in a location. At the end of the allowed locations, there will be a long beep to indicate that you are back at entry one of the location.

If you go to location 61 – Primary Account Codes, and then press the [*] key again followed by a digit, you will be changing just the digit in that string.

8.3 Programming Extended Locations

The following steps show you how to program extended locations. These are locations that have sub-locations. There are two ways to program extended locations: the string method or by using sub-locations.

8.3.1. Using the String Method

Using the string method is a fast and efficient way to program the X64. By filling in the programming sheets, the installer can first plan the installation, and then very quickly program multiple locations.

- 1. Ensure that the panel is in program mode the READY LED will be flashing.
- 2. Enter the **[LOCATION NO.]** of the program location that you wish to view or change.
- 3. Press the [*] key. The READY LED is on and the ARM and AWAY LEDs will flash.
- 4. The first sub-location of data on the LED keypad is displayed.
- 5. Enter the **[STRING]** for the program locations that you wish to change.
- 6. Press the [*] key, a long beep indicates a valid data entry.
- 7. The ARM and AWAY LEDs turn off and the READY LED will flash for the next location.
- 8. If you do not wish to change the data within this location, press the **[#]** key. The READY LED will continue flashing and the ARM and AWAY LEDs will turn off.
- 9. Repeat steps 2 7 until all extended locations have been programmed.
- 10. Press the [#] key again to exit from program mode.
- 11. The READY LED will stop flashing and the panel will return to standby mode.

NOTE:

To view the rest of the string, use the [*] key to advance one sub-location at a time. At the end of the allowed locations, there will be a long beep to indicate that you are back at entry one of the location. The mode automatically reverts to Sub-location Mode - see "Using Sub-locations".

When programming using the string method, any attempt to enter invalid data will result in an error beep (3 short beeps).

The AWAY and ARM LEDs will remain on after the error beeps. Re-enter the correct data. There is no need to press the **[#]** key.

EXAMPLE:

[INSTALLER CODE] [*] [1] [*] [0102040404040404] [*]

8.3.2. Using Sub-locations

Sub-location programming is the classic IDS programming method. It is a personal choice as to which method works for the individual installer.

- 1. Ensure that the panel is in program mode the READY LED will be flashing.
- 2. Enter the **[LOCATION NO.]** of the program location that you wish to view or change.
- 3. Press the [*] key. The READY LED is on and the ARM and AWAY LEDs will flash.
- 4. Enter the **[SUB-LOCATION NO.]** (after you have programmed your location) for the program location that you wish to view or change.
- 5. Press the [*] key. The READY LED will remain on. The ARM LED will change from flashing to steady, with the AWAY LED continuing to flash, indicating sub-location mode.
- 6. Enter the **[NEW DATA]** followed by the **[*]** key. A long beep will indicate a valid entry. The READY LED is on. The ARM and AWAY LEDs will flash.
- If you do not wish to change the data within this sub-location, press the [#] key. This takes you
 back to the locations programming section. The READY LED is on and the ARM and AWAY LEDs
 will flash.
- 8. Repeat steps 5 6 until all sub-locations at the current location have been programmed.
- 9. Press the hash **[#]** key to exit from the current location, the ARM and AWAY LED will turn off and the READY LED will continue flashing.
- 10. Repeat steps 2 to 9 until all extended locations have been programmed.
- 11. Press the [#] key again to exit from program mode.
- 12. The READY LED will stop flashing and the panel will return to standby mode.

When programming a sub-location, any attempt to enter invalid data will result in an error beep (3 short beeps).

The AWAY and ARM LEDs will remain on after the error beeps. Re-enter the correct data. There is no need to press the [#] key.

EXAMPLE:

[INSTALLER CODE] [*] [1] [*] [1] [*] [1] [*] [2] [*] [2] [*] [3] [*] [4] [*]

NOTE:

When you enter a location containing sub-locations and press the [*] key, you will initially enter the first sub-location. Each time you press the [*] key you will jump to the next sub-location. If you enter a digit, you will be changing the information stored in that sub-location itself. At the end of the allowed sub-locations, there will be a long beep to indicate that you are back at the first sub-location.

8.4 Programming a Location or Sub-location with a Bitmap

A bitmapped location allows the installer to program multiple panel features within a single location. This is achieved by using the individual zone LEDs to indicate which features are enabled or disabled.

By referring to the appropriate location reference tables, the installer can view the entire selection of features associated with that location

- 1. Ensure that the panel is in program mode the READY LED will be flashing.
- 2. Enter the **[LOCATION NO.]** of the program location that you wish to view or change.
- 3. Press the [*] key. The READY LED is on. The AWAY LED flashes whilst in bitmap programming mode.
- Each LED represents a specific state of a feature. A lit zone LED indicates that a feature is enabled. An unlit LED indicates that a feature is disabled.

Section: 8

- 5. To toggle a selected feature ON or OFF, press the corresponding LED zone number followed by the [*] key.
- 6. Once a complete selection of features has been configured, press the [#] key to exit.

When programming a location/sub-location with a bitmap, any attempt to enter invalid data will result in an error beep (3 short beeps).

The LED zone number will not change its state.

EXAMPLE:

Location 16 allows the installer to enable up to twelve trouble conditions that may be displayed. Refer to Table 10 for default enabled trouble conditions.

Upon entering program mode and viewing the contents of location 16, it will be noted that the enabled trouble condition LEDs will be on.

To enable the Communications Fail Trouble Display (indicated by zone 2 LED) press the [2] key followed by the [*] star key. A long beep will indicate a valid entry and the zone 2 LED will turn on indicating that Communications Fail Trouble Display has been enabled.

Continue selection (or de-selection) of the desired trouble conditions. Once a final selection has been made, press the **[#]** key to exit the location. The AWAY LED will turn off and a long beep will indicate the return to location entry mode.

9. Programming Location Summary

A detailed description of each location and its options follow.

LOCATION 0 Defaulting the Panel or Master user Code

This location allows you to default the panel, user codes and their properties, and bus-wired peripherals. Refer to Table 4 for the values, that can be programmed, and their actions.

[INSTALLER CODE] [*] [0] [*] [VALUE] [*]

Table 4: Defaulting Data

Value	Action
0	Will reset all locations to the factory default values.
U	(Master User Code 1234) and all keypad IDs will be defaulted.
4	Will default the Primary Master User Code back to 1234 - or 123456 if 6 digits are being used.
	Master User Code properties will also be defaulted.
2	Defaults ALL user codes and their properties.
3	Defaults ALL keypads.
	Remove Missing Devices.
4	Any missing devices (keypads, for example), will have its address freed up, making its address
-	available for a new device when it is enrolled. This MUST be performed when replacing a faulty
	device. (You must wait for 10 seconds.)

The valid data range is: 0 - 4.

9.1 Zones

LOCATIONS 1 - 8 Individual Zone Type Setup (Zones 1 – 64)

These locations allow you to program the zone types for zones 1-64. The zones are divided into 8 zones per location. After the zone type is programmed for zones 9 through 64, they will need to be assigned to a partition before being enabled.

Refer to section 9.11 Partition Options to see how to add zones to partitions and what options are available.

Each location represents a set of 8 zones:

- Location 1 is zones 1-8
- Location 2 is zones 9-16
- Location 3 is zones 17-24
- Location 4 is zones 25-32
- Location 5 is zones 33-40
- Location 6 is zones 41-48
- Location 7 is zones 49-56
- Location 8 is zones 57-64

Refer to Table 5 for available zone types.

NOTE:

- If you require a panic zone whose status can be viewed on a keypad, use a panic on zones 1-64 by programming 03 into the zone. Do NOT use the dedicated panic for this purpose, as it cannot be viewed on a keypad.
- Zones 1-8 are onboard zones.
- Zones 9-16 are plug-in expander zones.
- Zones 17-64 are expander zones.

Table 5: Zone Types

Value	Zone Type
	DISABLED
00	A zone violation of a Disabled zone is ignored by the Alarm Panel and will not be indicated on
	the keypad.
	PRIMARY ENTRY/EXIT ZONE
	Violations of an Entry/Exit zone are ignored during the exit delay period of the arming
	procedure. Violating an Entry/Exit zone when armed will initiate the entry delay period. If a valid
	User Code is not entered before the entry delay period expires, an alarm condition will be
01	registered. Failure to exit through an Entry/Exit zone after arming will cause the panel to Stay
	Arm. This zone may also function as an Entry/Exit zone that is COMMON to two partitions. In such a
	case, should a user violate this zone and then disarm this partition, the OTHER partition will re-
	arm after the entry delay.
	FOLLOWER ZONE
	A Follower zone is not monitored during the Entry/Exit delay period; therefore it will not cause a
02	violation. This allows the user to enter/exit via the Follower zone. A Follower zone will behave as
	an Instant zone while the panel is armed and an Entry/Exit zone is not violated prior to violation
	of the Follower zone.
	PANIC/PRIORITY ZONE
03	Regardless of whether the panel is armed or not, a violation of a Priority zone will cause the
	Alarm Panel to register a panic condition. This zone type CANNOT be bypassed.
04	INSTANT ZONE
	Violation of an Instant zone will cause the Alarm Panel to register an alarm condition.
	ARM/DISARM ZONE
	Violation of an Arm/Disarm zone will cause the panel to toggle between (away) armed and
05	disarmed. It is typical to connect a momentary key-switch, or non-latching remote control unit to
	this zone. NOTE: A zone must be added to a partition in order for it to arm.
	SECONDARY ENTRY/EXIT ZONE
80	The Secondary entry delay will be activated if this zone is violated while the panel is armed.
	FIRE ZONE
	Violation of a Fire zone will cause the siren to sound regardless of whether the panel is armed or
10	not. The siren will sound intermittently (one second on, one second off). For correct operation, a
	programmable output programmed as a fire detector power output must be used to control
	power to the fire detector (refer to Table 35).
	TAMPER ZONE
11	Violation of a Tamper zone will be reported to the base station regardless of whether the panel
	is armed or disarmed. If the panel is armed, the siren will sound.
	24 HOUR ALARM ZONE
12	Regardless of whether the panel is armed or not, a violation of a 24 Hour Alarm zone will cause
	the Alarm Panel to register a panic condition.
	WARNING ZONE Violation of a Warning zone will eques the given to been. The violation is logged in the event log.
13	Violation of a Warning zone will cause the siren to beep. The violation is logged in the event log
	but it is not reported to the base station. Warning zones may be included and will be counted when used as part of the cross-zone.
	PUSH TO ARM ZONE
14	Violation of a Push to Arm zone during the exit delay will immediately arm the panel.
	OUTDOOR INSTANT ZONE
15	Violation of an Outdoor Instant zone will cause the panel to register an alarm condition.
	NOTE: This is a reporting code and it functions in the same way as zone type 04.
	1 2

How to program using the string method:

To program 8 zones at a time, fill in a row with the corresponding zone types (2 digits per type, found in Table 5) and enter these values as one long 16-digit string for location 1. This method can be used for the remaining 56 zones by noting that location 2 references zones 9 to 16, location 3 references zones 17 to 24, ...etc.

I.e. To program the defaulted zone types (Table 6) for the first 16 zones use the following:

```
[INSTALLER CODE] [*]
[1] [*] reference zones 1 - 8
[01020404040404] [*]
[2] [*] reference zones 9 - 16
[00000000000000000] [*]
```

How to program using the sub-location method:

To program zones using the sub-location method, program 1 (as indicated by

"[]" sub-location (followed by the [*] key) and then enter the zone type (followed by the [*] key). Then press the [*] key again to advance to the next sub-location. For sub-locations, the zone type does not have to be 2 digits, i.e. enter 1 or 01.

To repeat for further zones, enter the second zone number (followed by the [*] key) and then the zone type (followed by the [*] key). This can be repeated for all 64 zones.

[INSTALLER CODE] [*]	
[1] [*]	reference zones 1 - 8
[1] [*] [1] [*] [*]	zone 1, zone type 1
[2] [*] [2] [*] [*]	zone 2, zone type 2
[3] [*] [4] [*] [*]	zone 3, zone type 4
[4] [*] [4] [*] [*]	zone 4, zone type 4

How to program using the [*] key to advance:

A third method to program zones using the star advance method is to enter the location number corresponding to a group of 8 zones you wish to program. Each press of the [*] key will step through a zone.

I.e. To change zone 12 to an Instant zone, use the following:

[INSTALLER CODE] [*]	
[2] [*]	reference zones 9 – 16
[*]	move to zone 10
[*]	move to zone 11
[*]	move to zone 12
[4] [*]	zone type 4

Table 6 & Table 7 represent the default zone types for the 64 zones represented in 2 different programming methods.

Table 6: Zone Types in String Format

Zones	Loc	Sub-loc	As Strings	Zone Type
1 - 8	1	n/a	0102040404040404	ref above table
9 - 16	2	n/a	0000000000000000	All Disabled
17 - 24	3	n/a	0000000000000000	All Disabled
25 - 32	4	n/a	0000000000000000	All Disabled
33 - 40	5	n/a	0000000000000000	All Disabled
41 - 48	6	n/a	0000000000000000	All Disabled
49 - 56	7	n/a	0000000000000000	All Disabled
57 - 64	8	n/a	0000000000000000	All Disabled

Table 7: Zone Types in Sub-location Format

Zone	Loc	Sub-Loc	As Sub-locations	Zone Type
1	1	1	01	Entry / Exit
2	1	2	02	Follower
3	1	3	04	Audible Instant
4	1	4	04	Audible Instant
5	1	5	04	Audible Instant
6	1	6	04	Audible Instant
7	1	7	04	Audible Instant
8	1	8	04	Audible Instant

The valid data range is: 00 - 05, 08, 10 - 15.

9.2 Global Setup

LOCATION 10 Zone Shutdown Count (default = 5)	
2007 their is	

This location determines the number of times a zone may be violated while the panel is armed before it is automatically bypassed. Disarming the panel will clear all bypassed zones.

The Zone Shutdown Count set here applies to all zones that have option 3 (shutdown zone) enabled in locations 101-164.

[INSTALLER CODE] [*] [1] [0] [*] [ZONE SHUTDOWN COUNT] [*]

The valid data range is: 1 – 15.

LOCATION 11 Programmable Zone Loop Response Time (default = 2)

The zone loop response time is the period of time for which a zone must remain violated before a violation is registered. The time is calculated in 12 millisecond increments starting at 12ms. A partial table between the values of 1 and 255 is shown in Table 8; times not shown on the table can be calculated as per the following example:

 $198 \times 0.012 = 2.38$ seconds.

(This is an advanced location).

To program the time into this location, the format is **[MMSS]**.

[INSTALLER CODE] [*] [1] [1] [*] [ZONE LOOP RESPONSE TIME] [*]

The valid data range is: 1 – 255.

Table 8: Loop Response Time Data

Value	Response Time
1	12 ms
2	24 ms
3	36 ms
4	48 ms
5	60 ms
6	72 ms
7	84 ms
8	96 ms
9	108 ms
10	120 ms
11	132 ms
12	144 ms
13	156 ms
14	168 ms
15	180 ms
16	192 ms

Value	Response Time
30	360 ms
45	540 ms
60	720 ms
75	900 ms
90	1.08 seconds
105	1.26 seconds
120	1.44 seconds
135	1.62 seconds
150	1.80 seconds
165	1.98 seconds
180	2.16 seconds
195	2.34 seconds
210	2.52 seconds
225	2.70 seconds
240	2.88 seconds
255	3.06 seconds

LOCATION 12	Cross-zone Delay Time (default = 0030)
LOCATION IZ	Oross-zone Delay Time (delauit = 0000)

This location defines the cross-zone delay timer period in minutes and seconds, and it is used in conjunction with location 13. (This is an advanced location).

To program the time into this location, the format is [MMSS].

[INSTALLER CODE] [*] [1] [2] [*] [MMSS] [*]

The valid data range is: 00m00s - 59m59s.

LOCATION 13	Cross-zone Count (default = 3)

AB If the panel is armed and the total number of violations of zones programmed as cross-zones (locations 101-164) reaches this count within the time period programmed into location 12, an alarm condition will be registered. Any single zone enabled as a cross-zone, which is violated continuously for the time specified in location 12 will also register an alarm condition.

[INSTALLER CODE] [*] [1] [3] [*] [CROSS-ZONE COUNT] [*]

The valid data range is: 1 - 15, with 0 to disable.

LOCATION 14	Global Options

This location allows you to configure the global options for the X64 Alarm Panel. Table 9 shows the available options.

NOTE:

For each enabled option, the corresponding locations that configure that option must also be programmed for correct operation.

Table 9: Global Options Data

LED	On / Off	Action
1	ON	A user assigned to any partition may cancel the siren
'	OFF	Only a user assigned to the partition that triggered the siren may cancel the siren
2	ON	Enable keypad trouble beep
_	OFF	Disable keypad trouble beep
3	ON	Enable telephone line monitoring
	OFF	Disable telephone line monitoring
4	ON	Enable keypad beep on successful reporting to the base station
4	OFF	Disable keypad beep on successful reporting to the base station
5	ON	Enable keypad Fire, Medical and Panic keys
5	OFF	Disable keypad Fire, Medical and Panic keys
6	ON	Enable the display of bypassed and stay zones when armed
	OFF	Disable the display of bypassed and stay zones when armed
7	ON	Enable the siren delay
_ ′	OFF	Disable the siren delay
8	ON	Enable box tamper monitoring
•	OFF	Disable box tamper monitoring
9	ON	Enable siren monitoring
9	OFF	Disable siren monitoring
10	ON	Enable bus-wired peripheral tamper monitoring*
10	OFF	Disable bus-wired peripheral tamper monitoring*
11	ON	Enable onboard dedicated panic – silent
- ' '	OFF	Disable onboard dedicated panic- audible
12	ON	Enable low battery monitoring**
12	OFF	Disable low battery monitoring**
13	ON	Enable low battery cut-out**
13	OFF	Disable low battery cut-out**

Default values are shaded

^{*} Option 9 in location 16 must be enabled for this to work.

^{**} Option 12 needs to be enabled in order for option 13 to work.

Section: 9

NOTE:

If mains power is present, then the battery is monitored every 30 minutes. If it is detected that the battery voltage has dropped, option 12 will be reported if it is enabled.

If mains power is not present, then the battery is monitored every minute. If the battery voltage drops below 10V, then the battery will cut-out if option 13 is enabled. If the battery voltage drops below 11V, then option 12 will be reported if it is enabled.

LOCATION 15

AC Fail / Restore Reporting Delay (default = 0004)

In the event of a power failure (although instantly displaying the trouble indication) the panel will wait for this period of time before REPORTING the mains failure to the base station. The same time period applies before the restoral event is reported and logged. This delay eliminates unnecessary reporting if the AC power is removed for a short time period.

It is important to note that an AC restoral will only be reported if an AC failure was reported first, i.e. the delay period was exceeded. Provided the back up battery is in good condition, short AC power failures will not affect the functioning of the alarm system. To program the time into this location, the format is **[HHMM]**.

[INSTALLER CODE] [*] [1] [5] [*] [HHMM] [*]

The valid data range is: 00h01m - 18h00m.

LOCATION 16

Trouble Display Enable

This location determines which trouble conditions are indicated on the keypad when viewing the trouble display. A trouble condition is indicated by a flashing POWER LED. The POWER LED will only stop flashing once the trouble condition has been cleared. Trouble conditions will be reported if programmed to do so in locations 571 and 572, regardless of whether or not they are enabled for display.

The trouble condition can be viewed by holding down the [7] key until the keypad beeps once. See "Viewing Trouble Conditions" in the User manual.

Table 10 lists the available trouble conditions that can be selected for viewing when you press the [7] key.

Table 10: Trouble Display Options

LED	On / Off	Action
1	ON	Enable AC fail trouble display
'	OFF	Disable AC fail trouble display
2	ON	Enable reporting communications fail trouble display
	OFF	Disable reporting communications fail trouble display
3	ON	Enable telephone line monitoring trouble display
3	OFF	Disable telephone monitoring line trouble display
4	ON	Enable siren monitoring trouble display
4	OFF	Disable siren monitoring trouble display
5	ON	Enable low battery monitoring trouble display
5	OFF	Disable low battery monitoring trouble display
6	ON	Enable Aux. 12V monitoring trouble display
•	OFF	Disable Aux. 12V monitoring trouble display
7	ON	Enable engineer's reset trouble display
′	OFF	Disable engineer's reset trouble display
8	ON	Enable box tamper trouble display
•	OFF	Disable box tamper trouble display
9	ON	Enable bus-wired peripheral tamper trouble display
3	OFF	Disable bus-wired peripheral tamper trouble display
10	ON	Enable bus-wired peripheral fail trouble display
10	OFF	Disable bus-wired peripheral fail trouble display
11	ON	Enable bus-wired peripheral low power/ battery trouble display
- 11	OFF	Disable bus-wired peripheral low power/ battery trouble display
12	ON	Enable EEPROM trouble display
12	OFF	Disable EEPROM trouble display

Default values are shaded

Explanation of Trouble Conditions

AC Fail

This occurs when the Alarm Panel does not receive any power from your mains electricity. Causes of this can be a power failure, or your transformer is not plugged in or faulty.

This trouble condition will only clear once the power has been restored.

Reporting Communications Failure

This occurs when communication to the monitoring company is not successful. The event will clear upon exiting the trouble viewing mode.

> Telephone Line Monitoring

The causes of this could be a fault, or short, on the phone line; or the phone line could be cut

This trouble condition will only clear once the phone line restored.

Siren Monitoring

This can occur when the siren has been removed from circuit or the siren fuse on the panel has blown.

This trouble condition will only clear once the siren has been put back into circuit or the fuse has been replaced.

Low Battery Monitoring

This trouble condition can be caused by a low battery voltage, a dead battery, or no battery. If the battery is there, try charging it. If this not does work, then the battery needs to be replaced.

This trouble condition will only clear once the battery voltage has been restored.

Aux 12V Monitoring

This trouble condition indicates that the fuse has blown, or that there is a fault This trouble condition will only clear once the fault has been restored.

> Engineer's Reset

An alarm condition has occurred, the Installer needs to come and clear the condition by entering an installer code. The panel cannot be armed until this has occurred, nor will the trouble condition clear.

Box Tamper

The metal housing where the panel is stored has been opened.

To clear trouble condition, make sure the door to the housing is closed and then view the trouble condition.

Bus-wired Peripheral Tamper

A peripheral device could be a keypad, remote receiver or bus-wired zone expander. This trouble condition indicates that one of these devices has been tampered with. To clear this trouble condition, restore the tampered device and then view the tamper.

Bus-wired Peripheral Fail

The panel has lost communication to one of the peripherals attached to it.

Bus-wired Peripheral Low Power / Battery

Supply voltage to a peripheral has dropped below the recommended limit.

EEPROM

The panel is not communicating correctly due to a serious error.

LOCATION 17

Siren Time Out Period (default = 0200)

The siren time out period is the period of time for which the siren will sound after it has been activated.

To program the time into this location, the format is **IMMSS1**.

[INSTALLER CODE] [*] [1] [7] [*] [MMSS] [*]

The valid data range is: 00m01s - 59m59s.

LOCATION 18 Siren Delay (default = 0200)

This location sets the siren delay period between when an audible alarm condition is registered and the siren is activated. The alarm condition will however be reported to the base station as soon as it occurs. Panic zones and Fire zones will cause an immediate siren even if siren delay is programmed. Option 7 in location 14 (Global Options) must be enabled for the siren delay to have an effect.

To program the time into this location, the format is [MMSS].

[INSTALLER CODE] [*] [1] [8] [*] [MMSS] [*]

The valid data range is: 00m01s - 59m59s.

LOCATION 20

Keypad Lockout Count (default = 4)

AB If a partition has a keypad lockout enabled, the value entered in this location determines the number of consecutive incorrect codes to activate a keypad lockout. The keypad will remain locked for the time programmed in location 21. Activating a Keypad Panic (or dedicated panic zone or entering a duress code) will unlock the keypad.

Option 4 in locations 221-228 (Extended Partition Options) must be enabled for the keypad lockout count to have an effect.

[INSTALLER CODE] [*] [2] [0] [*] [KEYPAD LOCKOUT COUNT] [*]

The valid data range is: 2 – 16.

LOCATION 21

Keypad Lockout Time (default = 0030)

The value determines the period of time for which the keypad will remain locked out if the keypad lockout count programmed into location 20 has been exceeded. After this period has elapsed, a locked out keypad will return to an unlocked state. Keypad lockout is enabled by partition; refer to locations 221-228 for extended partition options, but this period applies to all partitions.

To program the time into this location, the format is **[MMSS]**.

[INSTALLER CODE] [*] [2] [1] [*] [MMSS] [*]

The valid data range is: 00m01s - 59m59s.

LOCATION 22

Keypad Sleep Delay (default = 0500)

This location sets the time out period before the keypad enters sleep mode. After the delay period, if there is no keypad activity (on any keypad) the backlighting and all other status and alarm LEDs will turn off. The POWER LED and if appropriate, the ARM LED will remain on.

The following events will bring a keypad out of sleep mode: Zone violations/restorals, Tamper violations/restorals, or key presses.

To program the time into this location, the format is **[MMSS]**.

[INSTALLER CODE] [*] [2] [2] [*] [MMSS] [*]

The valid data range is: 00m01s - 59m59s.

LOCATION 23

User, Installer & Maintenance Code - Number of Digits (default = 4)

This location determines whether user, installer and maintenance codes are 4 or 6 digits in length. The value programmed into this location has no effect on the download code, which is always 4-digits in length. Refer to Table 11 to view the defaults for 4-digit and 6-digit codes.

If the code length is changed from 6 to 4, then all user codes are automatically set to their default values as per Table 11. This is to avoid duplicate user codes being inadvertently created when they have the same first 4 digits.

Table 11: Number of Digits Data

Code	Old four-digit code	New six-digit code
Installer Code	9999	999999
Maintenance Code	8888	888888
Master User Code 1	1234	123456
User Codes 2-128	XXXX	XXXX00

[INSTALLER CODE] [*] [2] [3] [*] [NUMBER OF DIGITS] [*]

The valid data range is either 4 or 6.

LOCATION 24	Number of Account Code Digits (default = 4)

This location sets the account code length to either 4 or 6 digits. If the length of your account codes is 4 digits and then they are changed to 6 digits, the last two digits will be set to 0.

[INSTALLER CODE] [*] [2] [4] [*] [NUMBER OF DIGITS] [*]

The valid data range is: 4 or 6.

9.3 Daylight Savings

LOCATION 25	Month to Start Daylight Saving (default = 1)

AB

Select the month for Daylight Saving to commence, as per Table 12.

Table 12: Month Data

Value	Month
0	Disabled
1	January
2	February
3	March
4	April
5	May
6	June

Value	Month
7	July
8	August
9	September
10	October
11	November
12	December

[INSTALLER CODE] [*] [2] [5] [*] [MONTH] [*]

The valid data range: 1 – 12, with 0 to disable.

NOTE:

If this location is disabled, then by default, locations 26 and 27 will also be disabled. This means that even if you put values into locations 26 and 27, daylight savings will not commence.

LOCATION 26 Day of Week to Start Daylight Saving (default = 1)

AB

Select the day of the week for Daylight Saving to commence, as per Table 13.

Table 13: Day of Week Data

Value	Day
1	Monday
2	Tuesday
3	Wednesday
4	Thursday
5	Friday
6	Saturday
7	Sunday

[INSTALLER CODE] [*] [2] [6] [*] [DAY] [*]

The valid data range is: 1 - 7.

LOCATION 27 Week of Month to Start Daylight Saving (default = 1)

Select the week of the month for Daylight Saving to commence as per Table 14. To set the last week of each month, set the value to 5.

Table 14: Week of Month Data

Value	Day
1	Week One
2	Week Two
3	Week Three
4	Week Four
5	Last Week

[INSTALLER CODE] [*] [2] [7] [*] [WEEK] [*]

The valid data range is: 1 - 5.

LOCATION 28 Month to End Daylight Saving (default = 1)

AB

Select the month as per Table 12, to disable Daylight Saving.

[INSTALLER CODE] [*] [2] [8] [*] [MONTH] [*]

The valid data range: 1 - 12, with 0 to disable.

NOTE:

If this location is disabled, then by default, locations 29 and 30 will also be disabled. This means that even if you put values into locations 29 and 30, daylight savings will not start.

LOCATION 29 Day of Week to End Daylight Saving (default = 1)

Select the day of the week as per Table 13, to disable Daylight Saving.

[INSTALLER CODE] [*] [2] [9] [*] [DAY] [*]

AB

The valid data range is: 1 - 7.

LOCATION 30

Week of Month to End Daylight Saving (default = 1)

AB

Select the week of the month as per Table 14, to disable Daylight Saving.

[INSTALLER CODE] [*] [3] [0] [*] [WEEK] [*]

The valid data range is: 1 - 5.

LOCATION 31	Daylight Saying Time Offset (default = 60)

Enter the daylight saving time offset that will be sued while daylight saving is enabled. Refer to locations 25-30.

[INSTALLER CODE] [*] [3] [1] [*] [DAYLIGHT SAVING TIME OFFSET] [*]

The valid data range is: 0 - 250.

9.4 Miscellaneous - Advanced

LOCATION 32	Auto Test Report Interval (default = 1)

The value programmed into this location determines the duration of time between Automatic System Tests. Input the value as per Table 15.

Table 15: Auto Test Interval Data

Value	Time Period
0	Report every hour
1	Report daily
2	Every two days
3	Every three days
4	Every four days
5	Every five days
6	Every six days
7	Every seven days

Value	Time Period
8	Every eight days
9	Every nine days
10	Every ten days
11	Every eleven days
12	Every twelve days
13	Every thirteen days
14	Every fourteen days
15	Every fifteen days

[INSTALLER CODE] [*] [3] [2] [*] [AUTO TEST REPORT INTERVAL] [*]

The valid data range is: 0 - 15.

LOCATION 33	Auto Test Time (default = 0010)

Enter the time when the auto test will be reported. The format is **[HHMM]** based on a 24-hour clock. (All 4 digits must be entered.)

[INSTALLER CODE] [*] [3] [3] [*] [HHMM] [*]

The valid data range is: 00h00m - 23h59m.

Section: 9

EXAMPLE:

If a value of [7] was programmed into location 32 and [1400] was programmed into this location, the auto test would be sent every 7 days at 2:00 pm.

LOCATION 34 Download Code Default Disable (default = 0)

This location allows you to set whether the download code is defaulted back to 9999 in the event that the panel is defaulted. Refer to Table 16 for the values that can be programmed.

[INSTALLER CODE] [*] [3] [4] [*] [DOWNLOAD CODE DEFAULT DISABLE] [*]

Table 16: Download Code Disable Data

Value	Action
0	Enable Download code defaulting
10	Disable Download code defaulting

The valid data range is: 0 or 10.

LOCATION 35 Hardware Default Switch Disable (default = 0)

This location allows you to select whether the Hardware Default Switch is enabled. Refer to Table 17 for the values that can be programmed. For the detailed operation of this switch, refer to Section 3 Hardware Default Switch.

[INSTALLER CODE] [*] [3] [5] [*] [HARDWARE DEFAULT SWITCH DISABLE] [*]

Table 17: Default Switch Disable Data

Value	Action
0	Enable Hardware Default Switch
10	Disable Hardware Default Switch

The valid data range is: 0 or 10.

9.5 Communications Setup - Advanced

The X64 Alarm Panel has the capabilities for dual reporting as well as split reporting.

Dual reporting is when an alarm condition is reported to both telephone numbers within a telephone module. The condition will only be considered reported once it has been sent to both numbers.

Split reporting is when the panel has to report to either 1 of 2 dual reporting number pairs.

Refer to Figure 2 to see how telephone numbers work.

Refer to Table 40 to see the available options for zone split reporting.

EXAMPLE:

A monitoring company will have all the alarm conditions reported to base station one. All the trouble conditions will be reported to base station two.

NOTE:

- If the system is armed by zone, the system will report a close by **user 129**.
- If the system is armed using the quick arm key [1], the system will report a close by user 130.

- > If the system is armed using the quick stay key [5], the system will report a close by user 131.
- If the system is armed using the stay arm and go key [6], the system will report a close by user 132.
- If the system is armed by means of the auto arm function, the system will report a close by **user**
- If the system is armed with the download software, the system will report a close by user 134.
- These user numbers are hard coded, and they are used when the above actions are reported to a monitoring company.
- In order for these codes to be report, option 7 in Table 45 needs to be enabled.

NOTES ON CONTACT ID:

If the panel has been programmed to use Contact ID, it will not be necessary to program individual reporting codes. Provision has been made to enable/disable the reporting of certain groups of codes. Any event that relates to a specific zone, or to a specific user, will have the relevant zone/user number appended to the end of the Contact ID reporting code.

LOCATION 41 Telephone Number 1 Communications Format (default = 5)

The value entered into this location selects the primary communication format. Select from Table 18 the value that corresponds to the required format. During communication, the green LED on the PCB will turn on indicating that the panel has taken the telephone off-hook. If programmed accordingly, the keypad will beep after receiving a handshake from the base station. This indicates a successful transmission of data. Refer to Table 18 for the available communication formats.

[INSTALLER CODE] [*] [4] [1] [*] [COMMUNICATIONS FORMAT] [*]

The valid data range is: 0 - 8.

NOTE:

Refer to section 9.16 Event Reporting Options - Advanced, to see how to enable split reporting.

Table 18: Communications Format Data

Value	Format Name	Description
0	Ademco Express	Dual Tone HS, DTMF
1	FBI 4 x 2 (With Parity)	1.8kHz TX, 2.3kHz HS, 40PPS
2	FBI 4 x 2 (No Parity)	1.8kHz TX, 2.3kHz HS, 20PPS
3	Silent Knight 4 x 2 Fast	1.9kHz TX, 1.4kHz, 20PPS
4	Silent Knight 4 x 2 Slow	1.9kHz TX, 1.4kHz, 20PPS
5	Contact ID	Dual Tone HS, DTMF
6	Reserved	
7	SIA Reporting	Bell 103 FSK, HS
8	Reserved	

TX = Transmit
HS = Handshake
PPS = Pulses per Second

LOCATION 42 Te	ephone Number 2 Communications Format	(default = 5)
----------------	---------------------------------------	---------------

A B If dual reporting is enabled then this format will be used to report to phone number 2, which belongs to reporting module 1. Refer to Table 18 for the available communication formats.

[INSTALLER CODE] [*] [4] [2] [*] [COMMUNICATIONS FORMAT] [*]

The valid data range is: 0 – 8.

LOCATION 43 Telephone Number 3 Communications Format (default = 5)

AB If dual reporting is enabled then this format will be used to report to phone number 3, which belongs to reporting module 2. Refer to Table 18 for the available communication formats.

[INSTALLER CODE] [*] [4] [3] [*] [COMMUNICATIONS FORMAT] [*]

The valid data range is: 0 - 8.

LOCATION 44 Telephone Number 4 Communications Format (default = 5)

If dual reporting is enabled then this format will be used to report to phone number 4, which belongs to reporting module 2. Refer to Table 18 for the available communication formats.

[INSTALLER CODE] [*] [4] [4] [*] [COMMUNICATIONS FORMAT] [*]

The valid data range is: 0 - 8.

LOCATION 45 Communication Delay (default = 0020)

This location sets the period of time that the panel will wait before reporting zone violations and restorals. If the alarm is cancelled within this time, violations and restorals will not be reported. Violations will however be logged in the event log. Panic events will be reported instantly – regardless of any selected delay period.

Option 3 in locations 221-228 (Extra Partition Options) must be enabled for the communication delay to have an effect.

To program the time into this location, the format is **[MMSS]**.

[INSTALLER CODE] [*] [4] [5] [*] [MMSS] [*]

The valid data range is: 00m01s - 59m59s.

LOCATION 46	Reporting Communications Options

The panel may be programmed to report to a single central station (single reporting) or to report to two central stations (dual reporting). Refer to Table 19 for a list of reporting options.

Table 19: Reporting Communications Options Data

LED	On / Off	Action	
4	ON	Enable Tone Dialling	
'	OFF	Enable Pulse Dialling	
2	ON	Join the Telephone Numbers Together	
	OFF	Keep Two Separate Telephone Numbers	
3	ON	Enable Dual Reporting	
٦	OFF	Disable Dual Reporting	

Default values are shaded

NOTE:

If option 3 is enabled, then option 2 will not work. You cannot join telephone numbers with dual reporting enabled.

LOCATION 47 Number of Dial Attempts (default = 6)

This location determines the maximum number of dial attempts that the panel will make in order to contact the base station. This applies to any of the four phone numbers programmed into locations 51-54.

If this location is disabled, the Alarm Panel will not report to any base stations.

[INSTALLER CODE] [*] [4] [7] [*] [NUMBER OF DIAL ATTEMPTS] [*]

The valid range of data: 1 - 9, with 0 to disable.

LOCATION 48 Download Options

This location configures options relating to remote connections made to the X64 via the onboard telephone dialler. Refer to Table 20 for the values you can select.

- Fax defeat is useful for downloading when a fax or answering machine is connected to the same phone line as the Alarm Panel. If this feature is enabled, dial the panel and hang up before three rings. Dial the panel again within one minute. The panel will then pick up the call on the first ring thereby preventing the fax / answering machine from answering the call before the alarm.
- If forced answer is enabled the [8] key may be used to force the panel to go off hook, "answering the line".
- If Auto Pickup is enabled it will pick up the line after the number of rings programmed into location 49.
- > The Call-back feature, when enabled, allows the download software/ to request that the panel call it back using the phone number as programmed into location 50.

Table 20: Download Options Data

LED	On / Off	Action
4	ON	Enable Fax Defeat
	OFF	Disable Fax Defeat
2	ON	Enable Forced Answer
	OFF	Disable Forced Answer
3	ON	Enable Auto Pickup
3	OFF	Disable Auto Pickup
4	ON	Enable Call-back
4	OFF	Disable Call-back

Default values are shaded

LOCATION 49 Number of Rings to Answer (default = 15)

This location determines the number of rings before the panel "answers" the telephone line. In the event that the panel answers the call and no valid download logon sequence, or DTMF signal, is received within 40 seconds, the panel will terminate the call and hang up the line.

[INSTALLER CODE] [*] [4] [9] [*] [NUMBER OF RINGS TO ANSWER] [*]

The valid data range is: 1 - 15.

9.6 Phone Numbers

NOTES ON SINGLE REPORTING:

Single reporting works by dialling the first programmed number within the chosen telephone module. If there is no answer, the second phone number will be dialled. If the second telephone number picks up the call, then the reporting is considered successful.

If the second phone number does not pick up, then it will dial the first number again. It will alternate between the phone numbers, until one is successful, up to the number of dial attempts programmed into location 47.

If a phone number has no value programmed into it, it implies that it is disabled.

NOTES ON DUAL REPORTING:

By enabling dual reporting it is possible to select a different format for each reporting medium. In this instance, all data will be transmitted to each phone number (i.e. reported twice) using the format specified for that particular number. Both numbers need to be programmed for dual reporting to work. If the dual reporting feature is enabled, an event must be communicated to both telephone numbers before the event is considered reported. This feature cannot be used with the join phone numbers option. (See location 46).

If dual reporting is enabled the dual reporting output will be set when the panel dials the second phone number, and cleared when it hangs up at the end of transmission. This output follows the hook relay. It may be used to trigger switching from the telephone line to a radio transmitter.

NOTES ON HOW TO PROGRAM A PHONE NUMBER:

Enter numbers consecutively with no other key presses between each digit.

Inserting pauses

A pause may be inserted at any point within the telephone number: Entering a value of **[MODE]** [3] will provide a 12-second pause, **[MODE]** [4] will provide an 8-second pause and a value of **[MODE]** [5] will provide a 4-second pause.

```
To dial a "*" enter [MODE] [1]
To dial a "#" enter [MODE] [2]
```

For a "12-second pause" enter [MODE] [3] (On the LCD keypad it will be displayed as a "+")

For a "8-second pause" enter **[MODE] [4]** (On the LCD keypad it will be displayed as a "=")

For a "4-second pause" enter [MODE] [5] (On the LCD keypad it will be displayed as a "-")

[MODE] [0] will clear the phone number, anything entered into this location after that will NOT be registered.

EXAMPLE:

Phone number 1 is to be dialled as follows:

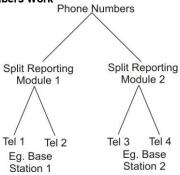

[0] followed by a 4-second pause then [0317051373]. The key sequences are as follows per Table 21.

Table 21: Phone Number Example

Data entered	Explanation
[INSTALLER CODE][*]	To enter program mode
[5][1][*]	To enter location 51 (phone number 1)
[0]	To dial the zero
[MODE][5]	This programmes the 4 second pause
[0][3][1]	This enters the area code
[7][0][5][1][3][7][3]	The remainder of the number
[*]	To program the number
[#]	To exit installer menu

Refer to Figure 2 to see how telephone numbers work.

Figure 2: How Telephone Numbers Work

LOCATION 50 Call-back Telephone Number

The phone number programmed into this location will be used to respond to a call-back request from the IDS download software/PC. (This is an advanced location).

Option 4 in location 48 (Download Options) must be enabled for the call-back telephone number to have an effect.

[INSTALLER CODE] [*] [5] [0] [*] [CALL-BACK NUMBER] [*]

LOCATION 51	Telephone Number 1

Program this location to set the primary telephone number. A maximum of 24-digits can be entered. Enter the digits consecutively and after the last digit has been entered, terminate with the [*] key.

[INSTALLER CODE] [*] [5] [1] [*] [TELEPHONE NUMBER 1] [*]

LOCATION 52	Telephone Number 2

Program this location to set the secondary telephone number. A maximum of 24-digits can be entered. Enter the digits consecutively and after the last digit has been entered, terminate with the [*] key.

[INSTALLER CODE] [*] [5] [2] [*] [TELEPHONE NUMBER 2] [*]

LOCATION 53 Telephone Number 3

Program this location to set the third telephone number. A maximum of 24-digits can be entered. Enter the digits consecutively and after the last digit has been entered, terminate with the [*] key.

[INSTALLER CODE] [*] [5] [3] [*] [TELEPHONE NUMBER 3] [*]

LOCATION 54 Telephone Number 4

Program this location to set the fourth telephone number. A maximum of 24-digits can be entered. Enter the digits consecutively and after the last digit has been entered, terminate with the [*] key.

[INSTALLER CODE] [*] [5] [4] [*] [TELEPHONE NUMBER 4] [*]

LOCATIONS 61-68 Primary Account Codes (Partitions 1-8)

The primary account code is always used for reporting, regardless of whether single or dual reporting is used. This account code is reported to the first telephone number in the telephone module. Each location represents a partition:

- Location 61 is partition 1
- Location 62 is partition 2
- Location 63 is partition 3
- Location 64 is partition 4
- Location 65 is partition 5
- Location 66 is partition 6
- Location 67 is partition 7
- Location 68 is partition 8

[INSTALLER CODE] [*] [LOCATION] [*] [PRIMARY ACCOUNT CODE] [*]

Refer to section 8.2 Programming Standard Locations to see how to scroll through data in a location using the [*] key.

NOTE:

The length of the account code, either 4 or 6 digits, is set in location 24. If the length of the account code is changed from 4 to 6 digits, then the account codes will automatically have 00 at the end of them to make them 6 digits in length.

LOCATIONS 71-78 Secondary Account Code (Partitions 1-8)

The secondary account code is only used when dual reporting is enabled. This account code is reported to the second telephone number in the telephone module. Each location represents a partition:

- Location 71 is partition 1
- Location 72 is partition 2
- Location 73 is partition 3
- Location 74 is partition 4
- Location 75 is partition 5
- Location 76 is partition 6
- Location 77 is partition 7

Location 78 is partition 8

[INSTALLER CODE] [*] [LOCATION] [*] [SECONDARY ACCOUNT CODE] [*]

NOTE:

The length of the account code, either 4 or 6 digits, is set in location 24. If the length of the account code is changed from 4 to 6 digits, then the account codes will automatically have 00 at the end of them to make them 6 digits in length.

Refer to section 8.2 Programming Standard Locations to see how to scroll through data in a location using the [*] key.

9.7 Zone Properties

LOCATIONS 101-164 Zone Type Properties (Zones 1 – 64)

Locations 101-164 are used to configure properties for zones 1-64 respectively. Each location contains a bitmap of 5 zone type properties, as per Table 22.

Tamper by Zone

Individual zones may be enabled for tamper by zone.

If the panel is unarmed and a tamper condition occurs, the siren will not activate but a tamper condition will be reported.

If the panel is armed and a tamper condition occurs on the particular zone, an audible alarm condition will register and a tamper condition will be reported.

Cross-zoning

This feature is useful for reducing false alarms. Violating zones with the cross-zone property enabled will not immediately generate an alarm. The Cross-zone Delay Time is started as per location 12.

Depending on the value programmed into location 13 (Cross-zone Trip Count), the zone (or any other zone with cross-zone option enabled) must trip the number of times programmed into location 13 before an alarm is generated. An alarm will also be generated should any single zone remain violated for the entire delay period (location 12). An Entry/Exit cannot be configured as a cross-zone. Each cross-zone will have its own timer.

Shutdown Zone

While armed, if the number of alarm violations generated by a swinger zone equals the shutdown count (location 10), the Alarm Panel no longer reports violations of that swinger zone. The swinger shutdown counter will reset when the system is disarmed and re-armed, it can be programmed to try and re-enable the zone automatically when the 24 hour self-test report is generated. Each zone has its own shutdown count programmable from 1 to 15.

Silent Zone

This property allows any zone that would ordinarily activate the siren to be programmed as a Silent zone i.e. the violation of a Silent zone, while the system is armed, will not activate the siren. However, the relevant reporting code (if programmed) will still be reported. All zones can be programmed as a Silent zone, except for the Fire zone.

Chime Zone

The chime mode allows the user to monitor nominated zones while the system is disarmed. The keypad buzzer will sound five times when the nominated zone is violated - the siren will NOT sound and no alarm condition will be reported. Peripherals sending zone updates to the panel will not cause chimes on a zone upless the zone is restored and then violated.

Stay Profile

Stay zones are zones that are bypassed automatically when the system is "STAY ARMED". To avoid triggering the alarm, zones such as bedrooms that are protected by Passive Infra-Red (PIR) detectors or windows that may be opened, must be bypassed when "staying at home".

Stay zones need only be programmed once. Each time the system is armed in the Stay Mode the preselected stay zones will be bypassed automatically. The panel allows for 4 unique STAY PROFILES to be stored, consisting of a pre-selected combination of STAY and BUZZ zones, to suit a specific STAY ARM requirement. STAY and BUZZ zones can be programmed for each profile only once the particular profile has been selected.

Buzz Profile

Violation of a Buzz zone when Stay Armed will cause the keypad buzzer to sound for a period of 30 seconds during which time a valid user code must be entered. If a valid user code is not entered during this period, the system will register an alarm condition. This feature helps prevent unnecessary false alarms.

If an Entry/Exit zone is programmed as a Buzz zone, violation of the Entry/Exit zone (when the panel is Stay Armed) will cause the keypad buzzer to sound for the duration of the entry delay time (in place of the default 30 seconds). This, if the panel is Stay Armed, allows the user to enter the premises and disarm the panel. If it is not programmed as a Buzz zone, the alarm will be triggered immediately. If the panel was stay armed, a violation of the Entry/Exit zone will always start the Entry/Exit delay Any Entry/Exit zone programmed as a Buzz zone will not buzz.

Table 22: Zone Type Properties Data

LED	ON / OFF	Zone Properties
1	ON	Enable Tamper by Zone
ı	OFF	Disable Tamper by Zone
2	ON	Enable Cross-zone
2	OFF	Disable Cross-zone
3	ON	Enable Shutdown Zone
3	OFF	Disable Shutdown Zone
4	ON	Enable Silent Zone
4	OFF	Disable Silent Zone
5	ON	Enable Chime Zone
5	OFF	Disable Chime Zone
6	ON	Reserved
•	OFF	Reserved
7	ON	Reserved
,	OFF	Reserved
8	ON	Reserved
	OFF	Reserved

LED	ON / OFF	Zone Properties
9	ON	Stay Profile 1
ח	OFF	
10	ON	Stay Profile 2
10	OFF	
11	ON	Stay Profile 3
- 11	OFF	
12	ON	Stay Profile 4
12	OFF	
13	ON	Buzz Profile 1
2	OFF	
14	ON	Buzz Profile 2
14	OFF	
15	ON	Buzz Profile 3
15	OFF	
16	ON	Buzz Profile 4
10	OFF	

Default values are shaded

NOTE:

Please see section 14 of the User manual for more information on how to select stay profiles and how to switch between them.

9.8 No Movement - Advanced

LOCATION 171

No Movement Auto Arm Time Out (default =00)

If no violations are registered for the period of time specified in this location then the alarm will auto arm. This may be used if you forget to arm when leaving for work; the alarm will then automatically away arm itself if no violations were registered.

This function is only available if values have been programmed into locations 172 and 173.

This No Movement Auto Arm event reports a close event, using user number 133, but only if CID or SIA reporting has been selected.

Abc Enter a 2-digit duration in hours for each of the 8 partitions and program as a 16-digit string, followed by the **[*]** key.

[INSTALLER CODE] [*] [1] [7] [1] [*] [PARTITION NO.] [*] [AUTO ARM TIME OUT] [*]

The valid data range is: 01 – 23, with 00 to disable.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

If this location is disabled, then by default, locations 172 and 173 will also be disabled. This means that even if you put values into locations 172 and 173, no movement auto arm will not commence.

LOCATION 172

No Movement Auto Arm Start (default = 0000)

Program the start time to start checking for no movement. For example, if you leave your premises at 06:50 am, program the start time to be 07:00.

Abc Enter a 4-digit time **[HHMM]** for each of the 8 partitions and program as a 32-digit string, followed by the **[*]** key.

[INSTALLER CODE] [*] [1] [7] [2] [*] [PARTITION NO.] [*] [HHMM] [*]

The valid data range: 00h00m – 23h59m.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the **[*]** key.

LOCATION 173

No Movement Auto Arm End (default = 2400)

Program the end time to stop checking for no movement. For example, using 07:00 programmed into location 172 and if 2 hours is needed, then program 09:00.

Abc Enter a 4-digit time [HHMM] for each of the 8 partitions and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [1] [7] [3] [*] [PARTITION NO.] [*] [HHMM] [*]

Section: 9

The valid data range: 00h00m - 23h59m.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

LOCATION 174

No Movement Medical Alarm Time Out (default = 00)

If no movement is detected, while the panel is disarmed, for the period of time specified in this location then the alarm will activate.

This function is only available if values have been programmed into locations 175 and 176.

This No Movement Medical Alarm event reports a medical event, (see location 339 if custom reporting codes have been used).

EXAMPLE:

This may be used to monitor for elderly people who have suddenly become incapacitated and are unable to sound the panic.

Enter a 2-digit duration in hours for each of the 8 partitions and program as a 16-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [1] [7] [4] [*] [PARTITION NO.] [*] [ALARM TIME OUT] [*]

The valid data range is: 01 – 23, with 00 to disable.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

If this location is disabled, then by default, locations 175 and 176 will also be disabled. This means that even if you put values into locations 175 and 176, no movement medical alarm will not commence.

LOCATION 175

No Movement Medical Alarm Start (default = 0100)

The start time can be set for when you know that the person will be awake and active.

Program the start time to start checking for movement. For example, you expect a person to be awake at 6 am, program the start time to be 06:00.

Abc! Enter 4-digit time [HHMM] for each of the 8 partitions and program as a 32-digit string, followed by the [*] kev.

[INSTALLER CODE] [*] [1] [7] [5] [*] [PARTITION NO.] [*] [HHMM] [*]

The valid data range: 00h00m - 23h59m.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

LOCATION 176

No Movement Medical Alarm End (default = 0100)

Program the end time to stop checking for movement. For example, using 06:00 programmed into location 175 and if 2 hours is needed, then program 08:00.

Enter a 4-digit time [HHMM] for each of the 8 partitions and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [1] [7] [6] [*] [PARTITION NO.] [*] [HHMM] [*]

The valid data range: 00h00m - 23h59m.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

9.9 Auto Arm - Advanced

LOCATION 180

Auto Arm Time (default = 2400)

This location sets the time at which a particular partition will auto arm. To disable this location, enter 2400 as the time.

EXAMPLE:

To auto arm at 11:35 pm, enter 2335. All four digits must be entered, including any leading zeros (0100 for 1 am).

Enter a 4-digit time for each of the 8 partitions and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [1] [8] [0] [*] [PARTITION NO.] [*] [HHMM] [*]

The valid data range is: 00h00m – 23h59m, with 24h00m to disable.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

LOCATIONS 181 - 188 Auto Arm/Disarm Days (default = all OFF)

These bitmapped locations set the days on which the selected partition will auto arm and disarm at the times programmed in locations 180 and 189 respectively. Refer to Table 23 for the data you can input.

Each location represents a partition:

- Location 181 is partition 1
- Location 182 is partition 2
- Location 183 is partition 3
- Location 184 is partition 4
- Location 185 is partition 5
- Location 186 is partition 6
- Location 187 is partition 7
- Location 188 is partition 8

Section: 9

Table 23: Arm/ Disarm Davs Data

LED	ARM Days of the Week
1	Monday
2	Tuesday
3	Wednesday
4	Thursday
5	Friday
6	Saturday
7	Sunday
All OFF	(Arm Day Disabled)

LED	DISARM Days of the Week	
9	Monday	
10	Tuesday	
11	Wednesday	
12	Thursday	
13	Friday	
14	Saturday	
15	Sunday	
All OFF	(Disarm Day Disabled)	

Select the days to ARM (LEDs 1-7) and DISARM (LEDs 9-15) by toggling them on/off.

The valid data range is: 1-7, and 9-15. If no zone number LEDs are lit then it means it is disabled.

LOCATION 189	Auto Disarm Time (default = 2400)

This location sets the time at which a particular partition will auto disarm. To disable this location, enter 2400 as the time.

EXAMPLE:

To auto disarm at 06:00 am, enter 0600. All four digits must be entered, including any leading zeros (0100 for 1 am).

Enter a 4-digit time for each of the 8 partitions and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [1] [8] [9] [*] [PARTITION NO.] [*] [HHMM] [*]

The valid data range is: 00h00m – 23h59m, with 24h00m to disable.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

For this auto disarm to be active; partition option 15 must be enabled in locations 221-228 and the appropriate disarm days) selected in locations 181-188.

LOCATION 190 Auto Arm Delay (default = 0200 i.e. 2 minutes)

This location sets the delay period for the keypad buzzer warning, which is initiated before the panel auto arms. At the completion of the Auto Arm Delay, the panel will arm. A valid user code entered during the delay period will cancel the auto arming.

Enter a 4-digit time for each of the 8 partitions and program as a 32-digit string, followed by the [*1 key.

[INSTALLER CODE] [*] [1] [9] [0] [*] [PARTITION NO.] [*] [MMSS] [*]

The valid data range is: 00m01s - 59m59s.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

9.10 Security Codes

LOCATION 197

Installer Code (default = 9999)

AB

This location is used to change the installer code to a code that is more preferable.

[INSTALLER CODE] [*] [1] [9] [7] [*] [NEW INSTALLER CODE] [*]

Refer to section 8.2 Programming Standard Locations to see how to scroll through data in a location using the [*] key.

NOTE:

Refer to location 23 to set the number of digits in the installer code.

LOCATION 198 Download Code (default = 9999)

This location is used to change the download code to a code that is more preferable.

The download code (in conjunction with the installer code) is required for download access to the Alarm Panel.

A value of [10] programmed into location 34 will prevent the download code from being defaulted when performing a hardware default.

[INSTALLER CODE] [*] [1] [9] [8] [*] [NEW DOWNLOAD CODE] [*]

NOTE:

If the panel is defaulted, the download code will revert to 9999. The download code is 4-digits in length.

LOCATION 199

Maintenance Code (default = 8888)

Users can be given limited access to installer mode by entering the maintenance code programmed in this location.

Panel functions that can be edited in maintenance mode are:

- Siren time
- Siren delay
- Keypad lockout count
- Keypad sleep delay
- All daylight savings settings
- All partition auto arm settings
- All no zone activity auto arm settings
- All no zone activity alarm settings

[INSTALLER CODE] [*] [1] [9] [9] [*] [NEW MAINTENACE CODE] [*]

NOTE:

Refer to location 23 to set the number of digits in the maintenance code.

9.11 Partition Options

LOCATIONS 201 - 208 Partition Zone Allocation

Program these locations to allocate zones to each of the 8 partitions. Lit zone number LEDs represent the zones allocated to the selected partition. The zones are displayed as 4 pages of 16 zones each as per Table 24. To scroll to the next page of 16 zones, press the [*] key.

Zones are common, which means that one zone can be allocated to more than one partition.

The keypad start zone in location 241 needs to be programmed for keypads displaying zone numbers higher than 16.

Each location represents a partition number:

- Location 201 is partition 1
- Location 202 is partition 2
- Location 203 is partition 3
- Location 204 is partition 4
- Location 205 is partition 5
- Location 206 is partition 6
- Location 207 is partition 7
- Location 208 is partition 8

Figure 3 and Figure 4 show the order in which the LEDs display to show you which zones you are viewing as per Table 24.

Figure 3: Paging Indication on the Classic Keypad

ARMED ② ③ AWAY
READY ① ④ POWEI

Figure 4: Paging Indication on the Curved Keypad

4 1 2 3
Pwr Rdy Arm Away

Table 24: Zones per Partition Page

Page	1	2	3	4			
LED	READY	ARM	AWAY	POWER			
Zones							
	1 9	17 25	33 41	49 57			
	2 10	18 26	34 42	50 58			
	3 11	19 27	35 43	51 59			
	4 12	20 28	36 44	52 60			
	5 13	21 29	37 45	53 61			
	6 14	22 30	38 46	54 62			
	7 15	23 31	39 47	55 63			
	8 16	24 32	40 48	56 64			
		·					

LOCATIONS 211 - 218 Partition Arm Options (Partitions 1 – 8)

These locations are used to configure arm options for each partition. Refer to Table 25 for the values that can be selected.

Each location represents a partition:

- Location 211 is partition 1
- Location 212 is partition 2
- Location 213 is partition 3
- Location 214 is partition 4
- Location 215 is partition 5
- Location 216 is partition 6
- Location 217 is partition 7
- Location 218 is partition 8

(This is an advanced location).

Quick Arm:

This option allows the user to arm the panel by holding down the [1] key for three seconds. The keypad will beep once to indicate that the arm sequence has begun.

Force Arm:

With this option enabled, the panel will arm with violated zones e.g. an open window. This forces any violated zones to be temporarily bypassed when the panel arms. If such bypassed zones restore during the arm cycle (the window is closed, for example), the zone is automatically re-activated (un-bypassed) and a subsequent violation will trigger an alarm.

Siren Toot on Away Arm / Disarm:

This option allows the user an audible confirmation that arming or disarming of the panel has occurred. The siren is programmed to give a short beep after successful arming, and two short beeps after disarming. This is useful when used in conjunction with remote or key-switch arming/disarming.

Engineer Reset:

Enabling this option will prevent the panel from being rearmed after an alarm condition has occurred. In order to re-arm the panel, the installer will be required to enter a valid installer code.

If option 7 is set in location 16, an engineer reset trouble condition will also be displayed on the keypad.

Table 25: Partition Arm Options Data

LED	On / Off	Action			
1	ON	Enable Instant Arm			
'	OFF	Disable Instant Arm			
2	ON	Enable Instant Key-switch Arm			
2	OFF	Disable Instant Key-switch Arm			
3	ON	Enable Quick Away Arm Key			
3	OFF	Disable Quick Away Arm Key			
4	ON	Enable Quick Stay Arm Key			
4	OFF	Disable Quick Stay Arm Key			
5	ON	Enable Auto Stay Arm if No Exit Zone is Triggered*			
5	OFF	Disable Auto Stay Arm if No Exit Zone is Triggered*			
	ON	Enable Auto Stay Arm if No Exit Zone is Triggered When Arming with a Keyswitch*			
6	OFF	Disable Auto Stay Arm if No Exit Zone is Triggered When Arming with a Key-switch *			
7	ON	Enable Forced Arm			
	OFF	Disable Forced Arm			
8	ON	Enable Zone Bypassing			
•	OFF	Disable Zone Bypassing			
9	ON	Enable Arm with Zones in the Entry Route Violated			
9	OFF	Disable Arm with Zones in the Entry Route Violated			
10	ON	Enable Siren Toot on Arm			
10	OFF	Disable Siren Toot on Arm			
11	ON	Enable Siren Toot on Disarm			
'''	OFF	Disable Siren Toot on Disarm			
12	ON	Enable the Entry Beep			
12	OFF	Disable the Entry Beep			
13	ON	Enable the Exit Beep			
13	OFF	Disable the Exit Beep			
14	ON	Enable Engineer's Reset			
14	OFF	Disable Engineer's Reset			
15	ON	Enable Auto Disarm			
15	OFF	Disable Auto Disarm			

Default values are shaded

^{*} For option 5 or 6 to work, option 2 needs to be disabled.

LOCATIONS 221 - 228 Extra Partition Options (Partitions 1 - 8)

These locations are used to configure extended options for each partition. Refer to Table 26 for the values that can be selected.

Each location represents a partition:

- Location 221 is partition 1
- Location 222 is partition 2
- Location 223 is partition 3
- ▶ Location 224 is partition 4
- Location 225 is partition 5
- Location 226 is partition 6
- Location 227 is partition 7 Location 228 is partition 8

(This is an advanced location).

Table 26: Extended Partition Options Data

LED	On/ Off	Action
	ON	Enable Automatic Re-enabling of Shutdown Zones at the Time of the Dialler test
ı	OFF	Disable Automatic Re-enabling of Shutdown Zones at the Time of the Dialler test
2	ON	Enable Bypassing of Common Zones
_	OFF	Disable Bypassing of Common Zones
3	ON	Enable Delay Before Communications
3	OFF	Disable Delay Before Communications
4	ON	Enable Keypad Lockout
4	OFF	Disable Keypad Lockout
5	ON	Enable Silent Keypad Panic
3	OFF	Disable Silent Keypad Panic

Default values are shaded

9.12 **Delays**

LOCATION 230	Exit Delay Period (default = 0030)

The exit delay period is the amount of time between arming the panel and successfully exiting the premises without violating Entry/Exit and Follower zones.

The exit delay will begin after the system is armed by either:

- Entering a valid user code
- Pressing the [1] key and holding it down until the system is armed \triangleright
- \triangleright Pressing the [6] key and holding it down until the system is armed

Abcl Enter a 4-digit exit delay period for each of the 8 partitions and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [2] [3] [0] [*] [PARTITION NO.] [*] [MMSS] [*]

Section: 9

The valid data range is: 00m00s - 59m59s.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

LOCATION 231

Primary Entry Delay Period (default = 0030)

The primary entry delay begins after the violation of a Primary Entry/Exit zone. During this delay, it is permissible to violate Follower zones without causing an alarm condition if an Entry/Exit zone was violated first.

If a Follower zone is violated without a prior Entry/Exit zone violation, it will be treated as an Instant zone. If an Instant zone is violated during this period, an alarm condition will immediately be registered.

Enter a 4-digit entry delay period for each of the 8 partitions and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [2] [3] [1] [*] [PARTITION NO.] [*] [MMSS] [*]

The valid data range is: 00m00s - 59m59s.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

LOCATION 232

Secondary Entry Delay Period (default = 0030)

The secondary entry delay begins after the violation of a Secondary Entry/Exit zone. During this delay, it is permissible to violate Follower zones without causing an alarm condition if an Entry/Exit zone was violated first.

Enter a 4-digit entry delay period for each of the 8 partitions and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [2] [3] [2] [*] [PARTITION NO.] [*] [MMSS] [*]

The valid data range is: 00m00s - 59m59s.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

9.13 Options to Configure Keypads

LOCATION 240

Keypad Partition (default = Partition 1)

Program this location to allocate each keypad to a partition. Enter the partition number to which each keypad, with an ID 1-8, must be allocated. To view the ID of a keypad refer to location 243.

AbcI key.

Enter 1 digit for each of the 8 keypads and program as an 8-digit string, followed by the [*]

[INSTALLER CODE] [*] [2] [4] [0] [*] [KEYPAD NO.] [*] [PARTITION NO.] [*]

The valid data range is: 1 - 8.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

LOCATION 241

Keypad Display Start Zone (default = Zone 1)

The zones which a particular LED keypad displays is determined by programming the keypad start zone location. The number programmed into this location is the zone which will be assigned to LED 1 on the keypad. The keypad will display subsequent zones in order. The keypad will only display zones belonging to its partition.

Enter a 2-digit display start zone (01 – 64) for each of the 8 keypads and program as a 16-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [2] [4] [1] [*] [KEYPAD NO.] [*] [START ZONE] [*]

The valid data range is: 01 – 64.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

This only applies to LED keypads and not LCD keypads.

LOCATION 242

Keypad Zone Number (default = 0 i.e. Disabled)

A keypad zone must be allocated to any zone number (1-64), before it can be used. The corresponding zone type must be programmed in locations 1-8 and the properties configured in locations 101-164. If you configure a keypad to a zone number that is already a wired zone, then the keypad will take priority on the zone number.

Enter a 2-digit zone number (01 – 64) for each of the 8 keypads and program as a 16-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [2] [4] [2] [*] [KEYPAD NO.] [*] [ZONE NO.] [*]

The valid data range: 01 – 64.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

LOCATION 243

View Keypad ID

View the data in this location to determine the Keypad ID (1 - 8).

[INSTALLER CODE] [*] [2] [4] [3] [*] NOTE:

This is a read-only location and no data no can be changed.

LOCATIONS 251 - 258 Keypad Options

These locations are used to configure options for a keypad. Refer to Table 27 for the available options.

Each location represents a keypad:

- Location 251 is keypad 1
- Location 252 is keypad 2
- Location 253 is keypad 3
- Location 254 is keypad 4
- Location 255 is keypad 5
- Location 256 is keypad 6
- Location 257 is keypad 7
- Location 258 is keypad 8

(This is an advanced location).

Table 27: Keypad Options Data

LED	On / Off	Action
4	ON	The keypad will timeout back to its default partition after it has been used to view another partition
•	OFF	The keypad will not timeout and will continue to show current partition information
2	ON	Keypad sleep mode enabled
2	OFF	Keypad sleep mode disabled
3	ON	Enable Global Keypad Status
3	OFF	Disable Global Keypad Status

Default values are shaded

- LED 3 must be ON in order for LED 1 to have any effect.
- > The Global Keypad Status will allow sixteen zones to be displayed regardless of the partition to which either the keypad or zones are assigned.
 - On a LED keypad from the keypad start zone number plus 16 zones.
 - On a LCD keypad from the keypad start zone number up to 64 zones.

9.14 Reporting Codes - Advanced

This section describes how to configure custom reporting codes if the format of said reporting code is not Contact ID o r SIA.

9.14.1 Global Reporting Codes

LOCATION 300

Global Reporting Code 1

This location is used to configure global reporting codes to be used in the event that neither Contact ID nor SIA formats are used. These codes will be used for any of the other formats selected in section 9.5 Communications Setup - Advanced have been selected.

Sub-location 1 is AC Fail

The Alarm Panel will transmit this code in the event of an AC failure but only after the AC failure delay time has elapsed (location 15). Option 1 in Table 41 needs to be enabled.

Sub-location 2 is AC Restore

The Alarm Panel will transmit this code once the AC restore delay time has elapsed (location 15). It will however only be reported if an AC failure was registered. Option 4 in Table 42 needs to be enabled.

> Sub-location 3 is Low Battery Monitor Fail

A low battery condition is reported when the battery voltage drops below 11V for a period longer than 5 minutes or immediately if it drops below 10V. Option 5 in Table 41 needs to be enabled

Sub-location 4 is Low Battery Monitor Restore

This code is reported once the battery voltage rises above 12V for a period of five minutes. Option 8 in Table 42 needs to be enabled.

Sub-location 5 is Auto Test

This code is reported at regular intervals (location 32). Option 8 in Table 43 needs to be enabled.

Sub-location 6 is Download

This code is reported once successful access to the panel has been obtained. Option 1 in Table 44 needs to be enabled.

> Sub-location 7 is Siren Monitor Fail

This code is reported when the siren fuse blows or when the siren or siren wiring is tampered with. Option 4 in Table 41 needs to be enabled.

Sub-location 8 is Aux 12V Monitor Fail

This code is reported when there is a problem with the Aux 12V. Option 6 in Table 41 needs to be enabled

Abc! Enter a 2-digit reporting code for each of the 8 sub-locations and program as a 16-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [3] [0] [0] [*] [SUB-LOCATION] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATION 301

Global Reporting Code 2

This location is used to configure global reporting codes to be used in the event that Neither Contact ID or SIA formats are used. These codes will be used when any of the other formats in section 9.5 Communications Setup - Advanced have been selected.

Sub-location 1 is Reserved

This sub-location is reserved.

> Sub-location 2 is Bus-wired Peripheral Tamper

This code is reported when there is a tamper condition on any external device attached to the keypad bus. Option 1 in Table 42 needs to be enabled.

> Sub-location 3 is Bus-wired Peripheral Fail

This code is reported when any external device attached to the keypad bus goes missing. Option 2 in Table 42 needs to be enabled.

> Sub-location 4 is Box Tamper

This code is reported when the box tamper contacts are open for a period exceeding 200 ms. Option 8 in Table 41 needs to be enabled.

> Sub-location 5 is Dedicated Panic

This code is reported when the dedicated panic zone is violated. Option 7 in Table 43 needs to be enabled.

Sub-location 6 is Reserved

This sub-location is reserved.

Sub-location 7 is Telephone Line Tamper

If telephone line monitoring is enabled (location 14), this code is reported if there is a tamper on the telephone line. Option 3 in Table 41 needs to be enabled.

Sub-location 8 is Telephone Line Restore

If telephone line monitoring is enabled (location 14), this code is reported once the telephone line integrity has been restored. Option 6 in Table 42 needs to be enabled.

Enter a 2-digit reporting code for each of the 8 sub-locations and program as a 16-digit string, followed by the [*] key.

NOTE:

When programming using the string method, reserved sub-locations will still need data to be inputted into them to maintain the 16-digits needed to successfully program. Inputting data into a reserved sub-location will not affect the value of the sub-location. Reserved sub-locations have a value of 00.

[INSTALLER CODE] [*] [3] [0] [1] [*] [SUB-LOCATION] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATION 303

Global Reporting Code 4

This location is used to configure global reporting codes to be used in the event that Neither Contact ID or SIA formats are used. These codes will be used when any of the other formats in section 9.5 Communications Setup - Advanced have been selected.

> Sub-location 1 is Wired Zone Expander Low Power Supply Monitoring

This code is reported when a wired zone expander experiences a low power supply.

Sub-location 2 is Wired Zone Expander Low Power Supply Restore

This code is reported when a wired zone expander recovers from a low power supply.

Sub-location 3 is Reserved

This sub-location is reserved.

Sub-location 4 is Reserved

This sub-location is reserved.

Sub-location 5 is Reserved

This sub-location is reserved.

Sub-location 6 is Reserved

This sub-location is reserved.

Sub-location 7 is Reserved

This sub-location is reserved.

Sub-location 8 is Reserved.

This sub-location is reserved.

Enter a 2-digit reporting code for each of the 8 sub-locations and program as a 16-digit string, followed by the [*] key.

NOTE:

When programming using the string method, reserved sub-locations will still need data to be inputted into them to maintain the 16-digits needed to successfully program. Inputting data into a reserved sub-location will not affect the value of the sub-location. Reserved sub-locations have a value of 00.

[INSTALLER CODE] [*] [3] [0] [3] [*] [SUB-LOCATION] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

9.14.2 Zone Reporting Codes

LOCATIONS 304 - 307 Zone Alarm Reporting Code

The 2-digit zone alarm code is reported when the zone is violated during an arm cycle or if a Panic or 24-Hour zone is violated. Option 1 in Table 40 needs to be enabled.

Each location represents a set of 16 zones:

- Location 304 is zones 1-16
- Location 305 is zones 17-32
- Location 306 is zones 33-48
- Location 307 is zones 39-64

Section: 9

Abc Enter a 2-digit reporting code for each of the 16 zones and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [LOCATION] [*] [ZONE NO.] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATIONS 308 - 311 Zone Alarm Restoral Reporting Code

The 2-digit zone restoral code is reported when the zone has returned to the "unviolated" condition after triggering an alarm. Option 2 in Table 40 needs to be enabled.

Each location represents a set of 16 zones:

- Location 308 is zones 1-16
- Location 309 is zones 17-32
- Location 310 is zones 33-48
- Location 311 is zones 39-64

Enter a 2-digit reporting code for each of the 16 zones and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [LOCATION] [*] [ZONE NO.] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATIONS 312 - 315 Zone Tamper Reporting Code

The 2-digit tamper code is reported if tamper by zone has been enabled and a zone tamper occurs. Option 5 in Table 40 needs to be enabled.

Each location represents a set of 16 zones:

- Location 312 is zones 1-16
- Location 313 is zones 17-32
- Location 314 is zones 33-48
- Location 315 is zones 39-64

Enter a 2-digit reporting code for each of the 16 zones and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [LOCATION] [*] [ZONE NO.] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATIONS 316 - 319 Zone Tamper Restore Reporting Code

The 2-digit tamper restore code is reported when a zone tamper has been cleared. Option 6 in Table 40 needs to be enabled

Each location represents a set of 16 zones:

- Location 316 is zones 1-16
- Location 317 is zones 17-32
- Location 318 is zones 33-48
- Location 319 is zones 39-64

Abe! Enter a 2-digit reporting code for each of the 16 zones and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [LOCATION] [*] [ZONE NO.] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATIONS 320 - 323 Zone Bypass Reporting Code

The 2-digit zone bypass code is reported when a zone has been bypassed while the panel is armed. Option 3 in Table 40 needs to be enabled.

Each location represents a set of 16 zones:

- Location 320 is zones 1-16
- Location 321 is zones 17-32
- Location 322 is zones 33-48
- Location 323 is zones 39-64

Enter a 2-digit reporting code for each of the 16 zones and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [LOCATION] [*] [ZONE NO.] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

Section: 9

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATIONS 324 - 327 Zone Force Arm Reporting Code

The 2-digit force zone arm code is transmitted if a partition is programmed to allow forced arming (arming with a violated zone) and a zone is violated at the time of arming. Option 4 in Table 40 needs to be enabled.

Each location represents a set of 16 zones:

- Location 324 is zones 1-16
- Location 325 is zones 17-32
- Location 326 is zones 33-48
- Location 327 is zones 39-64

Enter a 2-digit reporting code for each of the 16 zones and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [LOCATION] [*] [ZONE NO.] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATIONS 328 - 331 Zone Swinger Shutdown Reporting Code

The 2-digit swinger shutdown zone code is reported if the system is armed and a zone is automatically bypassed as a result of multiple violations of that zone. Option 7in Table 40 needs to be enabled. Each location represents a set of 16 zones:

- Location 328 is zones 1-16
- Location 329 is zones 17-32
- Location 330 is zones 33-48
- Location 331 is zones 39-64

Enter a 2-digit reporting code for each of the 16 zones and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [LOCATION] [*] [ZONE NO.] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATIONS 332 - 335 Zone Swinger Shutdown Restore Reporting Code

The 2-digit zone swinger shutdown restore code is reported when a swinger shutdown zone is automatically restored i.e. un-bypassed. Option 8 in Table 40 needs to be enabled.

Each location represents a set of 16 zones:

- Location 332 is zones 1-16
- Location 333 is zones 17-32
- Location 334 is zones 33-48
- Location 335 is zones 39-64

Enter a 2-digit reporting code for each of the 16 zones and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [LOCATION] [*] [ZONE NO.] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

9.14.3 Partition Reporting Codes

LOCATION 336

Duress Reporting Code

The 2-digit duress code is reported when a duress code is entered into any keypad belonging to the specified partition. Option 1 in Table 45 needs to be enabled.

Abc! Enter a 2-digit reporting code for each of the 8 partitions and program as a 16-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [3] [3] [6] [*] [PARTITION NO.] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATION 337

Keypad Panic Reporting Code

This location is configured per partition. This 2-digit code is reported when the [P] key on any keypad belonging to the specified partition is held down for two seconds. Option 2 in Table 45 needs to be enabled

Abc! Enter a 2-digit reporting code for each of the 8 partitions and program as a 16-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [3] [3] [7] [*] [PARTITION NO.] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATION 338

Fire Reporting Code

The 2-digit fire code is reported when the **[F]** key on any keypad belonging to the specified partition is held down for two seconds. Option 3 in Table 45 needs to be enabled.

Abc! Enter a 2-digit reporting code for each of the 8 partitions and program as a 16-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [3] [3] [8] [*] [PARTITION NO.] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATION 339

Medical Reporting Code

The 2-digit medical code is reported when the **[M]** key on any keypad belonging to the specified partition is held down for two seconds. Option 4 in Table 45 needs to be enabled.

Abc Enter a 2-digit reporting code for each of the 8 partitions and program as a 16-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [3] [9] [*] [PARTITION NO.] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATION 340

Keypad Lockout Reporting Code

The 2-digit keypad lockout code is reported when a keypad lockout condition occurs on any keypad belonging to the specified partition. Option 5 in Table 45 needs to be enabled.

Abc Enter a 2-digit reporting code for each of the 8 partitions and program as a 16-digit string, followed by the **[*]** key.

[INSTALLER CODE] [*] [3] [4] [0] [*] [PARTITION NO.] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Partition no. is: 1-8.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

9.14.4 User Reporting Codes

LOCATIONS 342 - 349 Close Reporting Code

The 2-digit close code is reported when the panel is AWAY ARMED. This location is configured per user. Refer to the User Manual where option 1 of User Reporting Codes Enabled, needs to be enabled.

Each location represents a set of 16 users:

- Location 342 represents users 1-16
- Location 343 represents users 17-32
- Location 344 represents users 33-48
- Location 345 represents users 49-64
- Location 346 represents users 65-80
- Location 347 represents users 81-96
- Location 348 represents users 97-112
- Location 349 represents users 113-128

Abc Enter a 2-digit reporting code for each of the 16 users and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [LOCATION] [*] [USER] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATIONS 350 - 357 Stay Close Reporting Code

The 2-digit stay close code is reported when the panel is STAY ARMED. This location is configured per user. Refer to the User Manual where option 2 of User Reporting Codes Enabled, needs to be enabled. Each location represents a set of 16 users:

- Location 350 represents users 1-16
- Location 351 represents users 17-32
- Location 352 represents users 33-48
- Location 353 represents users 49-64
- Location 354 represents users 65-80
- Location 355 represents users 81-96
- Location 356 represents users 97-112
 Location 357 represents users 113-128

Abc! Enter a 2-digit reporting code for each of the 16 users and program as a 32-digit string, followed by the [*] kev.

[INSTALLER CODE] [*] [LOCATION] [*] [USER] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATIONS 358 - 365 Open Reporting Code

The 2-digit open code is reported when the panel is DISARMED. This location is configured per user. Refer to the User Manual where option 3 of User Reporting Codes Enabled, needs to be enabled. Each location represents a set of 16 users:

- Location 358 represents users 1-16
- Location 359 represents users 17-32
- Location 360 represents users 33-48.
- Location 361 represents users 49-64
- Location 362 represents users 65-80
- Location 363 represents users 81-96
- Location 364 represents users 97-112
- Location 365 represents users 113-128

Abc! Enter a 2-digit reporting code for each of the 16 users and program as a 32-digit string, followed by the [*] key.

Section: 9

[INSTALLER CODE] [*] [LOCATION] [*] [USER] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values.

LOCATIONS 366 - 373 | Siren Cancel Reporting Codes

The 2-digit siren cancel code is reported when the siren is CANCELLED. This location is configured per user. Refer to the User Manual where option 4 of User Reporting Codes Enabled, needs to be enabled. Each location represents a set of 16 users:

- Location 366 represents users 1-16
- Location 367 represents users 17-32
- Location 368 represents users 33-48
- Location 369 represents users 49-64
- Location 370 represents users 65-80
- Location 371 represents users 81-96
- Location 372 represents users 97-112
- Location 373 represents users 113-128

Abc! Enter a 2-digit reporting code for each of the 16 users and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [LOCATION] [*] [USER] [*] [REPORTING CODE] [*]

The valid data range is: 01-FF, with 00 to disable.

If any of the sub-locations are disabled here, then the reporting codes will not report – even if they are enabled at 9.16 Event Reporting Options - Advanced.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

The values are hexadecimal. Refer to Table 3 on how to program hexadecimal values. Cancelling a Silent Alarm or Silent Panic will not cause the cancel siren code to be reported.

9.15 Programmable Outputs

9.15.1 Output Disarm Clear

LOCATION 380 Clear Programmable Onboard Outputs on Disarming

This bitmapped location allows onboard programmable outputs 1-5 to be cleared (set low) on disarming. The output/s to be cleared will be displayed by zone number LEDs. The programmable outputs will clear when ANY partition is disarmed. Refer to Table 28 to view which zone number LED corresponds to which onboard output.

Regardless of which partition they are allocated to, disarming any partition will clear these outputs.

Table 28: Clear Programmable Onboard Outputs Data

LED	Disarm Clear Output					
1	Output 1					
2	Output 2					
3	Output 3					
4	Output 4					
5	Output 5					

LOCATIONS 381 - 386 | Clear Programmable Zone Expander Outputs on Disarming

This bitmapped location allows the 2 outputs of the 6 zone expanders to be cleared (set low) on disarming. The output(s) to be cleared will be displayed by zone number LEDs. The programmable outputs will clear when ANY partition is disarmed. Refer to Table 29 to view which zone number LED corresponds to which zone expander output.

Each location represents a zone expander:

- Location 381 represents zone expander 1
- Location 382 represents zone expander 2
- Location 383 represents zone expander 3
- Location 384 represents zone expander 4
- Location 385 represents zone expander 5
- Location 386 represents zone expander 6

Table 29: Clear Programmable Zone Expander Outputs Data

LED	Output
1	Output 1
2	Output 2

LOCATION 389 Clear Programmable Keypad Outputs on Disarming

This bitmapped location allows the single outputs of the 8 keypads to be cleared (set low) on disarming. The output/s to be cleared will be displayed by zone number LEDs. The programmable outputs will clear when ANY partition is disarmed. Refer to Table 30 to view which zone number LED corresponds to which keypad output.

Table 30: Clear Programmable Keypad Outputs Data

LED	Output					
1	Keypad 1					
2	Keypad 2					
3	Keypad 3					
4	Keypad 4					
5	Keypad 5					
6	Keypad 6					
7	Keypad 7					
8	Keypad 8					

9.15.2 Partition Event Driven Outputs - Advanced

The following locations determine allow you to assign outputs and output actions to partition events for each partition.

LOCATIONS 390 – 414 | Partition Programmable Output Events

These locations allow you to configure various programmable output events per partition. See locations 423-426, "Global Programmable Output Events" for details on programming the programmable output events.

Table 31 and Table 32 summarise the partition specific events that can be assigned to the outputs. Only one output and action can be assigned per partition, unless otherwise stated. The maximum current available from a programmable output is 25mA.

For zone and keypad events, any zone or keypad assigned to a particular partition being programmed will trigger an output if that event occurs.

On an LED keypad, LEDs 1-8 represent the output number, and LEDs 9-16 represent the action.

Table 31: Partition Programmable Output Events for Locations 390-410

-		т_				r _			
Loc	Partition	P1	P2	P3	P4	P5	P6	P7	P8
390	Close Programmable Output Event								
391	Stay Close Programmable Output Event								
392	Open Programmable Output Event								
393	Cancel Programmable Output Event								
394	Alarm Restoral Programmable Output Event								
395	Bypass Programmable Output Event								
396	Forced Arm Programmable Output Event								
397	Zone Tamper Programmable Output Event								
398	Zone Tamper Restoral Programmable Output Event								
399	Zone Shutdown Programmable Output Event								
400	Zone Shutdown Restoral Programmable Output Event								
401	Keypad Panic Programmable Output Event								
402	Keypad Fire Programmable Output Event								
403	Keypad Medical Programmable Output Event								
404	Keypad Lockout Programmable Output Event								
405	Duress Programmable Output Event								
406	Verifies Cross-zone Trigger Programmable Output Event								
407	Burglary Programmable Output Event								
408	Panic Programmable Output Event								
409	Fire Programmable Output Event (Refer to zones 1-8)								
410	Tamper Zone Programmable Output Event								

Enter a 4-digit value (2 digits as per Table 33 and 2 digits as per Table 34) for each partition and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [LOCATION] [*] [PARTITION] [*] [OUTPUT] [ACTION] [*]

Table 32: Partition Programmable Output Events for Locations 411-414

411	411 Siren Programmable Output Event		 	 	 	
412	Strobe Programmable Output Event		 	 	 	
413	Chime Programmable Output Event		 	 	 	
414	Arm Follow Programmable Output Event		 	 	 	

NOTE:

Only an output can be entered for programmable output events 411-414.

Enter a 2-digit value for each partition and program as a 16-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [LOCATION] [*] [PARTITION NO.] [*] [OUTPUT] [*]

Partition no. is: 1-8.

A NOTE ON ARM FOLLOW:

An output which has been set as an Arm Follow Programmable Output Event will mimic the ARM LED on the keypad. The output will be set High when the partition is armed, set Low when the partition is disarmed, and will flash when the partition has an alarm condition. The benefit of this is that you can attach a siren, Remote Arm/Disarm LED Unit (862-84-10), etc to your Alarm Panel for an audible/visual display of the panel's state.

Table 33 lists the addresses for the physical outputs and Table 34 lists the output actions.

Table 33: Output Address Physical Mapping Data

Address	Physical Outputs	
00	Disabled	
01	Onboard output 1	
02	Onboard output 2	
03	Onboard output 3	
04	Onboard output 4	
05	Onboard output 5	
06	Zone expander 1 output 1	
07	Zone expander 1 output 2	
08	Zone expander 2 output 1	
09	Zone expander 2 output 2	
10	Zone expander 3 output 1	
11	Zone expander 3 output 2	
12	Zone expander 4 output 1	
13	Zone expander 4 output 2	
14	Zone expander 5 output 1	
15	Zone expander 5 output 2	
16	Zone expander 6 output 1	
17	Zone expander 6 output 2	
18	Reserved	
19	Reserved	
20	Reserved	

Address	Physical Outputs
21	Reserved
22	Reserved
23	Reserved
24	Reserved
25	Reserved
26	Reserved
27	Reserved
28	Reserved
29	Reserved
30	Reserved
31	Reserved
32	Reserved
33	Reserved
34	Keypad 1 output
35	Keypad 2 output
36	Keypad 3 output
37	Keypad 4 output
38	Keypad 5 output
39	Keypad 6 output
40	Keypad 7 output
41	Keypad 8 output

Table 34: Output Actions Data

Value	Output Action	
00	Set Output High (Set) Set Output Low (Reset)	
01		
02	Pulse Output High	
03	Pulse Output Low	

Table 35 lists the default output and action for locations 390-414.

Table 35: Default Programmable Events Data

Loc	Event	Default Output	Default Action
390	Close Programmable Output Event	Output 3 [03]	Set High [00]
391	Stay Close Programmable Output Event	Disabled [00]	
392	Open Programmable Output Event	Output 3 [03]	Set Low [01]
393	Cancel Programmable Output Event	Disabled [00]	
394	Alarm Restoral Programmable Output Event	Disabled [00]	
395	Bypass Programmable Output Event	Disabled [00]	
396	Forced Arm Programmable Output Event	Disabled [00]	
397	Zone Tamper Programmable Output Event	Disabled [00]	
398	Zone Tamper Restoral Programmable Output Event	Disabled [00]	
399	Zone Shutdown Programmable Output Event	Disabled [00]	
400	Zone Shutdown Restoral Programmable Output Event	Disabled [00]	
401	Keypad Panic Programmable Output Event	Output 1 [01]	Pulse High [02]
402	Keypad Fire Programmable Output Event	Output 4 [04]	Pulse High [02]
403	Keypad Medical Programmable Output Event	Output 5 [05]	Pulse High [02]
404	Keypad Lockout Programmable Output Event	Disabled [00]	
405	Duress Programmable Output Event	Output 1 [01]	Pulse High [02]
406	Verifies Alarm Programmable Output Event	Disabled [00]	
407	Burglary Programmable Output Event	Output 2 [02]	Pulse High [02]
408	Panic Programmable Output Event	Output 1 [01]	Pulse High [02]
409	Fire Programmable Output Event (Refer to Table 5)	Disabled [00]	
410	Tamper Zone Programmable Output Event	Disabled [00]	

Table 36: Default Programmable Events Data with no Default Action

Loc	Event	Default Output
411	Siren Programmable Output Event	Disabled [00]
412	Strobe Programmable Output Event	Disabled [00]
413	Chime Programmable Output Event	Disabled [00]
414	Arm Follow Programmable Output Event	Disabled [00]

NOTE:

Once a programmable output has been enabled, the default action will be Pulse High [02].

9.15.3 Zone Programmable Output Events

The following locations are used to program the various zone outputs.

LOCATIONS 415 - 422 Zone Programmable Output Events

An output can be assigned to a zone such that in the event of that zone causing an alarm condition, the chosen output performs the selected option. A list of available actions and their corresponding values is shown in Table 35.

Regardless of the action selected for a particular output, if it is programmed to clear on disarming of the panel (locations 380-389), the output will revert to clear (set low) after any partition disarmed. Each location represents a set of 8 zones:

- Location 415 is zones 1-8.
- Location 416 is zones 9-16
- Location 417 is zones 17-24
- Location 418 is zones 25-32
- Location 419 is zones 33-40
- Location 420 is zones 41-48.
- Location 421 is zones 49-56
- Location 422 is zones 57-64

Enter a 4-digit output and action for each of the 8 zones and program as 32-digit strings, followed by the [*] key.

[INSTALLER CODE] [*] [4] [1] [5] [*] [ZONE NO.] [*] [OUTPUT] [ACTION] [*]

Refer to section 8.2 Programming Standard Locations to see how to scroll through data in a location using the [*] key.

LOCATIONS 423 - 426 Global Programmable Output Events

These locations allow you to configure the global programmable output events. Refer to Table 37 to view the programmable output events per location.

- LEDs 1-8 represent the output number, and LEDs 9-16 represent the action. Once a programmable output has been enabled, the default action will be Pulse High [02].
- If dual reporting is enabled, an output allocated to the dual reporting programmable output event will be set when the panel dials the second phone number, and cleared when it hangs up at the end of the transmission. This output follows the hook relay. It may be used to trigger switching from the telephone line to a radio transmitter.
- > There is no output action for the fire sensor power and dual reporting programmable output events.

Table 37: Global Programmable Output Events Default Data

Loc	Sub- location	Event	Default Output	Default Action
423	1	AC Fail Programmable Output Event	Disabled [00]	
	2	AC Restore Programmable Output Event	Disabled [00]	
	3	Low Battery Programmable Output Event	Disabled [00]	
	4	Low Battery Restore Programmable Output Event	Disabled [00]	
	5	Auto Test Programmable Output Event	Disabled [00]	
	6	Download Programmable Output Event	Disabled [00]	
	7	Siren Tamper Programmable Output Event	Disabled [00]	
	8	Aux 12V Trouble Programmable Output Event	Disabled [00]	
424	1	Reserved	Disabled [00]	
	2	Bus-wired Peripheral Tamper Programmable Output Event	Disabled [00]	
	3	Bus-wired Peripheral Fail Programmable Output Event	Disabled [00]	
	4	Box Tamper Programmable Output Event	Disabled [00]	
	5	Dedicated Panic Programmable Output Event	Output [01]	Pulse High [02]
	6	Communication Fail Programmable Output Event	Disabled [00]	
	7	Telephone Line Tamper Programmable Output Event	Disabled [00]	
	8	Telephone Line Restore Programmable Output Event	Disabled [00]	
425	1	Reserved		
	2	Reserved		
	3	Reserved		
	4	Reserved		
	5	Reserved		
	6	Reserved		
	7	Reserved		
	8	Reserved		
426	1	Wired Zone Expander Low Battery Programmable Output Event	Disabled [00]	
	2	Wired Zone Expander Low Battery Restore Programmable Output Event	Disabled [00]	
	3	Fire Sensor Power Programmable Output Event	Disabled [00]	No Action
	4	Dual Reporting Programmable Output Event	Disabled [00]	No Action
	5	Reserved	, ,	
	6	Reserved		
	7	Reserved		
	8	Reserved		

Enter a 4-digit value (2 digits as per Table 33 and 2 digits as per Table 34) for each programmable output and program as a 32-digit string, followed by the [*] key. (This is an advanced location).

[INSTALLER CODE] [*] [LOCATION] [*] [SUB-LOCATION] [*] [OUTPUT] [ACTION] [*]

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

NOTE:

Once a programmable output has been enabled, the default action will be Pulse High [02].

9.15.4 Output Pulse Timing - Advanced

The following locations determine the length of time for which an output will pulse high before returning to a clear state

LOCATION 428

Onboard Output Pulse Time (default = 0002)

Enter a 4-digit time, [MMSS], for each of the 5 onboard outputs and program as a 20-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [4] [2] [8] [*] [OUTPUT NO.] [*] [MMSS] [*]

The valid data range is: 00m00s - 59m59s.

Output no. is: 1-5.

LOCATION 429 - 434 Zone Expander Output Pulse Time (default = 0002)

Enter a 4-digit time, [MMSS], for each of the 6 zone expanders output and program as an 8-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [LOCATION [*] [OUTPUT NO.] [*] [MMSS] [*]

The valid data range is: 00m00s - 59m59s.

Output no. is: 1-2.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

LOCATION 437

Keypad Output Pulse Time (default = 0002)

Enter a 4-digit time, [MMSS], for each of the 8 keypads output and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [4] [3] [7] [*] [OUTPUT NO.] [*] [MMSS] [*]

The valid data range is: 00m00s - 59m59s.

Output no. is: 1-8.

9.15.5 Output Scheduling On Time - Advanced

The following locations determine the time of day for each of the programmable outputs to turn on/off. These outputs can either be set high (on) or low (off). For the following locations to work the appropriate on/off days (locations 458-498), must be selected.

LOCATION 438

Onboard Output ON Time (default = 2400)

Enter a 4-digit time, **[HHMM]**, for each of the 5 onboard outputs and program as a 20-digit string, followed by the **[*]** key.

[INSTALLER CODE] [*] [4] [3] [8] [*] [OUTPUT NO.] [*] [HHMM] [*]

The valid data range is: 00h00m – 23h59m, with 24h00m to disable.

Output no. is: 1-5.

LOCATION 439 - 444 Zone Expander Output ON Time (default = 2400)

Abc! Enter a 4-digit time, **[HHMM]**, for each of the 6 zone expanders output and program as an 8-digit string, followed by the **[*]** key.

[INSTALLER CODE] [*] [LOCATION] [*] [OUTPUT NO.] [*] [HHMM] [*]

The valid data range is: 00h00m – 23h59m, with 24h00m to disable. Output no. is: 1-2.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

LOCATION 447

Keypad Output ON Time (default = 2400)

Enter a 4-digit time, **[HHMM]**, for each of the 8 keypads output and program as a 32-digit string, followed by the **[*]** key.

[INSTALLER CODE] [*] [4] [4] [7] [*] [OUTPUT NO.] [*] [HHMM] [*]

The valid data range is: 00h00m – 23h59m, with 24h00m to disable. Output no. is: 1-8.

9.15.6 Output Scheduling Off Time - Advanced

The following locations determine the programmed time for the programmable output to turn off. These outputs can either be set high (on) or low (off). For the following locations to work the appropriate on/off days (locations 458-498), must be selected.

LOCATION 448

Onboard Output OFF Time (default = 2400)

Enter a 4-digit time, **[HHMM]**, for each of the 5 onboard outputs and program as a 20-digit string, followed by the **[*]** key.

[INSTALLER CODE] [*] [4] [4] [8] [*] [OUTPUT NO.] [*] [HHMM] [*]

The valid data range is: 00h00m – 23h59m, with 24h00m to disable. Output no. is: 1-5.

LOCATION 449 - 454 Zone Exp

Zone Expander Output OFF Time (default = 2400)

Enter a 4-digit time, [HHMM], for each of the 6 zone expander outputs and program as an 8-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [LOCATION] [*] [OUTPUT NO.] [*] [HHMM] [*]

The valid data range is: 00h00m – 23h59m, with 24h00m to disable. Output no. is: 1-2.

Refer to section 8.3.2 Using Sub-locations to see how to scroll from one sub-location to another using the [*] key.

LOCATION 457 Keypad Output OFF Time (default = 2400)

Enter a 4-digit time, [HHMM], for each of the 8 keypad outputs and program as a 32-digit string, followed by the [*] key.

[INSTALLER CODE] [*] [4] [5] [7] [*] [OUTPUT NO.] [*] [HHMM] [*]

The valid data range is: 00h00m – 23h59m, with 24h00m to disable. Output no. is: 1-8.

9.15.7 Output Scheduling On/Off Days - Advanced

Outputs can be scheduled to set and reset at specified times on specific days of the week. To disable scheduling of an output ensure that all "days" are deselected.

LOCATIONS 458 - 498 Output On/Off Days

The on/off days for the outputs, to turn on or off, in

Table **39** can be programmed by using the values in Table **38**.

Table 38: Output Scheduling On/Off Days Data

LED	ON Days of the Week
1	Monday
2	Tuesday
3	Wednesday
4	Thursday
5	Friday
6	Saturday
7	Sunday
All OFF	(Arm Day Disabled)

LED	OFF Days of the Week
9	Monday
10	Tuesday
11	Wednesday
12	Thursday
13	Friday
14	Saturday
15	Sunday
All OFF	(Disarm Day Disabled)

Table 39: Outputs per Location

Loc.	Event	Output
458	Onboard Output 1	Refer to Table 38
459	Onboard Output 2	Refer to Table 38
460	Onboard Output 3	Refer to Table 38
461	Onboard Output 4	Refer to Table 38
462	Onboard Output 5	Refer to Table 38
463	Zone Expander 1, Output 1	Refer to Table 38
464	Zone Expander 1, Output 2	Refer to Table 38
465	Zone Expander 2, Output 1	Refer to Table 38
466	Zone Expander 2, Output 2	Refer to Table 38
467	Zone Expander 3, Output 1	Refer to Table 38
468	Zone Expander 3, Output 2	Refer to Table 38
469	Zone Expander 4, Output 1	Refer to Table 38
470	Zone Expander 4, Output 2	Refer to Table 38
471	Zone Expander 5, Output 1	Refer to Table 38
472	Zone Expander 5, Output 2	Refer to Table 38
473	Zone Expander 6, Output 1	Refer to Table 38
474	Zone Expander 6, Output 2	Refer to Table 38
475	Reserved	Refer to Table 38
476	Reserved	Refer to Table 38
477	Reserved	Refer to Table 38
478	Reserved	Refer to Table 38
479	Reserved	Refer to Table 38
480	Reserved	Refer to Table 38
481	Reserved	Refer to Table 38
482	Reserved	Refer to Table 38
483	Reserved	Refer to Table 38
484	Reserved	Refer to Table 38
485	Reserved	Refer to Table 38
486	Reserved	Refer to Table 38
487	Reserved	Refer to Table 38
488	Reserved	Refer to Table 38
489	Reserved	Refer to Table 38
490	Reserved	Refer to Table 38
491	Keypad 1	Refer to Table 38
492	Keypad 2	Refer to Table 38
493	Keypad 3	Refer to Table 38
494 495	Keypad 4 Keypad 5	Refer to Table 38
	Keypad 5 Keypad 6	Refer to Table 38
496 497	Keypad 6 Keypad 7	Refer to Table 38
497	31	Refer to Table 38
490	Keypad 8	Refer to Table 38

9.16 Event Reporting Options - Advanced

The following locations from 501-588 enable disable the reporting of events programmed into locations 300-373. If a reporting code has been programmed, and the reporting of that code is not enabled here – then the reporting code will not report.

LOCATIONS 501 – 564 | Split Reporting Zones 1 - 64

Locations 501 (zone 1) – 564 (zone 64) represent a bitmap of 64 split reporting zone locations.

Table 40: Split Reporting Zones Bitmap Data

LED	On/Off	Action
1	ON	Enable zone alarm reporting
•	OFF	Disable zone alarm reporting
2	ON	Enable zone alarm restore reporting
2	OFF	Disable zone alarm restore reporting
3	ON	Enable zone bypass reporting
,	OFF	Disable zone bypass reporting
4	ON	Enable zone force arm reporting
†	OFF	Disable zone force arm reporting
5	ON	Enable zone tamper reporting
5	OFF	Disable zone tamper reporting
6	ON	Enable zone tamper restore reporting
6	OFF	Disable zone tamper restore reporting
7	ON	Enable zone swinger shutdown reporting
,	OFF	Disable zone swinger shutdown reporting
8	ON	Enable zone swinger shutdown restore reporting
•	OFF	Disable zone swinger shutdown restore reporting

LED	On/Off	Reporting Pair
9	ON	Telephone module 2
9	OFF	Telephone module 1
10	ON	Telephone module 2
10	OFF	Telephone module 1
11	ON	Telephone module 2
	OFF	Telephone module 1
12	ON	Telephone module 2
12	OFF	Telephone module 1
13	ON	Telephone module 2
13	OFF	Telephone module 1
14	ON	Telephone module 2
14	OFF	Telephone module 1
15	ON	Telephone module 2
15	OFF	Telephone module 1
16	ON	Telephone module 2
16	OFF	Telephone module 1

Default values are shaded

NOTE:

See section 9.5 Communications Setup - Advanced.

Global Split Reporting 1

Table 41: Global Split Reporting 1 Bitmap Data

LED	On/Off	Action
1	ON	Enable AC fail reporting
	OFF	Disable AC fail reporting
•	ON	Enable communication fail reporting *
2	OFF	Disable communication fail reporting *
3	ON	Enable telephone line tamper reporting
,	OFF	Disable telephone line tamper reporting
4	ON	Enable siren fail reporting
4	OFF	Disable siren fail reporting
5	ON	Enable panel low battery fail reporting
5	OFF	Disable panel low battery fail reporting
6	ON	Enable aux 12V fuse fail reporting
0	OFF	Disable aux 12V fuse fail reporting
7	ON	Reserved
,	OFF	Reserved
8	ON	Enable box tamper reporting
0	OFF	Disable box tamper reporting

LED	On/Off	Reporting Pair
9	ON	Telephone module 2
9	OFF	Telephone module 1
10	ON	Telephone module 2
10	OFF	Telephone module 1
11	ON	Telephone module 2
-	OFF	Telephone module 1
12	ON	Telephone module 2
12	OFF	Telephone module 1
13	ON	Telephone module 2
13	OFF	Telephone module 1
14	ON	Telephone module 2
14	OFF	Telephone module 1
15	ON	Reserved
15	OFF	Reserved
16	ON	Telephone module 2
10	OFF	Telephone module 1

^{*} The reporting code is only supported by Contact ID or SIA, and thus will not be reported if any other format has been selected.

LOCATION 572

Global Split Reporting 2

Table 42: Global Split Reporting 2 Bitmap Data

LED	On/Off	Action
1	ON	Enable bus-wired peripheral tamper reporting
	OFF	Disable bus-wired peripheral tamper reporting
2	ON	Enable bus-wired peripheral fail reporting
4	OFF	Disable bus-wired peripheral fail reporting
3	ON	Enable bus-wired peripheral low battery reporting *
,	OFF	Disable bus-wired peripheral low battery reporting *
4	ON	Enable AC restore reporting
*	OFF	Disable AC restore reporting
5	ON	Enable communications restore reporting**
5	OFF	Disable communications restore reporting **
6	ON	Enable telephone line restore reporting
6	OFF	Disable telephone line restore reporting
7	ON	Enable siren restore reporting **
	OFF	Disable siren restore reporting **
8	ON	Enable panel low battery restore reporting
	OFF	Disable panel low battery restore reporting

LED	On/Off	Reporting Pair
9	ON	Telephone module 2
9	OFF	Telephone module 1
10	ON	Telephone module 2
10	OFF	Telephone module 1
11	ON	Telephone module 2
11	OFF	Telephone module 1
12	ON	Telephone module 2
12	OFF	Telephone module 1
13	ON	Telephone module 2
13	OFF	Telephone module 1
14	ON	Telephone module 2
14	OFF	Telephone module 1
15	ON	Telephone module 2
15	OFF	Telephone module 1
16	ON	Telephone module 2
10	OFF	Telephone module 1

^{*} The reporting code is only supported by Contact ID, and thus will only be reported if Contact ID has been selected.

^{**}The reporting code is only supported by Contact ID or SIA, and thus will not be reported if any other format has been selected.

Global Split Reporting 3

Table 43: Global Split Reporting 3 Bitmap Data

LED	On/Off	Action
1	ON	Enable aux 12V fuse restore reporting*
ı	OFF	Disable aux 12V fuse restore reporting*
2	ON	Reserved
	OFF	Reserved
3	ON	Enable box tamper restore reporting *
3	OFF	Disable box tamper restore reporting *
4	ON	Enable bus-wired peripheral tamper restore reporting*
_	OFF	Disable bus-wired peripheral tamper restore reporting*
5	ON	Enable bus-wired peripheral fail restore reporting *
3	OFF	Disable bus-wired peripheral fail restore reporting *
6	ON	Enable bus-wired peripheral low battery restore reporting**
6	OFF	Disable bus-wired peripheral low battery restore reporting**
7	ON	Enable dedicated panic reporting
,	OFF	Disable dedicated panic reporting
8	ON	Enable auto test reporting
	OFF	Disable auto test reporting

LED	On/Off	Reporting Pair
	ON	Telephone module 2
9	OFF	Telephone module 1
10	ON	Reserved
10	OFF	Reserved
11	ON	Telephone module 2
"	OFF	Telephone module 1
12	ON	Telephone module 2
12	OFF	Telephone module 1
13	ON	Telephone module 2
2	OFF	Telephone module 1
14	ON	Telephone module 2
1	OFF	Telephone module 1
15	ON	Telephone module 2
15	OFF	Telephone module 1
16	ON	Telephone module 2
10	OFF	Telephone module 1

^{*}The reporting code is only supported by Contact ID or SIA, and thus will not be reported if any other format has been selected.

^{**} The reporting code is only supported by Contact ID, and thus will only be reported if Contact ID has been selected.

LOCATION 574

Global Split Reporting 4

Table 44: Global Split Reporting 4 Bitmap Data

LED	On/Off	Action
1	ON	Enable download reporting
ļ	OFF	Disable download reporting
2	ON	Reserved
2	OFF	Reserved
3	ON	Reserved
3	OFF	Reserved
4	ON	Reserved
_	OFF	Reserved
5	ON	Reserved
5	OFF	Reserved
6	ON	Reserved
6	OFF	Reserved
7	ON	Reserved
	OFF	Reserved
8	ON	Reserved
0	OFF	Reserved

LED	On/Off	Reporting Pair
9	ON	Telephone module 2
9	OFF	Telephone module 1
10	ON	Reserved
10	OFF	Reserved
11	ON	Reserved
''	OFF	Reserved
12	ON	Reserved
12	OFF	Reserved
13	ON	Reserved
13	OFF	Reserved
14	ON	Reserved
14	OFF	Reserved
15	ON	Reserved
15	OFF	Reserved
16	ON	Reserved
16	OFF	Reserved

Table 45: Split Reporting Partitions 1-8 Data

LED	On/Off	Action
1	ON	Enable duress reporting
•	OFF	Disable duress reporting
2	ON	Enable keypad panic reporting
2	OFF	Disable keypad panic reporting
3	ON	Enable fire reporting
,	OFF	Disable fire reporting
4	ON	Enable medical reporting
4	OFF	Disable medical reporting
5	ON	Enable keypad lockout reporting
n	OFF	Disable keypad lockout reporting
6	ON	Reserved
6	OFF	Reserved
7	ON	Enable armed without user code reporting
	OFF	Disable armed without user code reporting
8	ON	Reserved
	OFF	Reserved

LED	On/Off	Reporting Pair
LED	ON	Telephone module 2
9	OFF	Telephone module 1
	ON	Telephone module 2
10	OFF	Telephone module 1
44	ON	Telephone module 2
11	OFF	Telephone module 1
40	ON	Telephone module 2
12	OFF	Telephone module 1
40	ON	Telephone module 2
13	OFF	Telephone module 1
4.0	ON	Reserved
14	OFF	Reserved
45	ON	Telephone module 2
15	OFF	Telephone module 1
10	ON	Reserved
16	OFF	Reserved

Default values are shaded

Each location represents a partition:

- Location 581 is partition 1
- Location 582 is partition 2
- Location 583 is partition 3
- Location 584 is partition 4
- Location 585 is partition 5
- Location 586 is partition 6
- Location 587 is partition 7
- Location 588 is partition 8

10. Keypad Information

[1] and [3]

To view information for an individual keypad, press the [1] and [3] keys simultaneously and then quickly release

The LCD keypad will display 'Keypad Info'. Use the **[PANIC]** and **[MED]** keys to scroll through the available information.

Lowest Zone	This displays the start zone of the keypad (this is only applicable to LED
	keypad, therefore, the LCD keypad will always display 01)
Highest Zone	This displays the end zone of the keypad (this is only applicable to the
	LED keypad, therefore, the LCD keypad will always display 64)
Zone Mask	This displays the zones. The information is read from right to left. Each hex
	character displays information for 4 zones
Version Nr	This displays the version number of the keypad firmware
Version Date	This displays the date the version was created
	Highest Zone Zone Mask Version Nr

When phoning the helpdesk for technical support, it is important to be able to give them the firmware version of the keypad. This will help with the troubleshooting process.

11. Panel Information

[*] [*]

To view information for the panel, hold down the [*] key to enter the user menu, then press the [*] key again to enter into the panel information.

Use the [*] key to scroll through the information.

FW This displays the firmware version of the panel
 HW This displays the hardware version of the panel
 BL This displays the boot loader version of the panel
 BN This displays the build number of the panel

When phoning the helpdesk for technical support, it is important to be able to give them all (or at least) some of information for the panel. This will help with the troubleshooting process.

Index of Programming Locations

LOCATION 0	Defaulting the Panel or Master user Code	22
LOCATIONS 1 - 8	Individual Zone Type Setup (Zones 1 – 64)	23
LOCATION 10	Zone Shutdown Count (default = 5)	26
LOCATION 11	Programmable Zone Loop Response Time (default = 2)	26
LOCATION 12	Cross-zone Delay Time (default = 0030)	27
LOCATION 13	Cross-zone Count (default = 3)	
LOCATION 14	Global Options	28
LOCATION 15	AC Fail / Restore Reporting Delay (default = 0004)	29
LOCATION 16	Trouble Display Enable	29
LOCATION 17	Siren Time Out Period (default = 0200)	31
LOCATION 18	Siren Delay (default = 0200)	31
LOCATION 20	Keypad Lockout Count (default = 4)	32
LOCATION 21	Keypad Lockout Time (default = 0030)	32
LOCATION 22	Keypad Sleep Delay (default = 0500)	32
LOCATION 23	User, Installer & Maintenance Code - Number of Digits	32
LOCATION 24	Number of Account Code Digits (default = 4)	
LOCATION 25	Month to Start Daylight Saving (default = 1)	33
LOCATION 26	Day of Week to Start Daylight Saving (default = 1)	34
LOCATION 27	Week of Month to Start Daylight Saving (default = 1)	34
LOCATION 28	Month to End Daylight Saving (default = 1)	34
LOCATION 29	Day of Week to End Daylight Saving (default = 1)	
LOCATION 30	Week of Month to End Daylight Saving (default = 1)	35
LOCATION 31	Daylight Saving Time Offset (default = 60)	
LOCATION 32	Auto Test Report Interval (default = 1)	
LOCATION 33	Auto Test Time (default = 0010)	
LOCATION 34	Download Code Default Disable (default = 0)	
LOCATION 35	Hardware Default Switch Disable (default = 0)	
LOCATION 41	Telephone Number 1 Communications Format (default = 5)	
LOCATION 42	Telephone Number 2 Communications Format (default = 5)	37
LOCATION 43	Telephone Number 3 Communications Format (default = 5)	
LOCATION 44	Telephone Number 4 Communications Format (default = 5)	
LOCATION 45	Communication Delay (default = 0020)	
LOCATION 46	Reporting Communications Options	
LOCATION 47	Number of Dial Attempts (default = 6)	
LOCATION 48	Download Options	
LOCATION 49	Number of Rings to Answer (default = 15)	
LOCATION 50	Call-back Telephone Number	
LOCATION 51	Telephone Number 1	
LOCATION 52	Telephone Number 2	
LOCATION 53	Telephone Number 3	
LOCATION 54	Telephone Number 4	
LOCATIONS 61-68	Primary Account Codes (Partitions 1- 8)	
LOCATIONS 71-78	Secondary Account Code (Partitions 1-8)	
LOCATIONS 101-164	Zone Type Properties (Zones 1 – 64)	
LOCATION 171	No Movement Auto Arm Time Out (default =00)	
LOCATION 171	No Movement Auto Arm Start (default = 0000)	
LOCATION 172	No Movement Auto Arm End (default = 2400)	
LOCATION 173	No Movement Medical Alarm Time Out (default = 00)	
LOCATION 174	No Movement Medical Alarm Start (default = 0100)	
LOCATION 176	No Movement Medical Alarm End (default = 0100)	
LOCATION 176	Auto Arm Time (default = 2400)	

LOCATIONS 181 - 188	Auto Arm/Disarm Days (default = all OFF)	
LOCATION 189	Auto Disarm Time (default = 2400)	
LOCATION 190	Auto Arm Delay (default = 0200 i.e. 2 minutes)	48
LOCATION 197	Installer Code (default = 9999)	49
LOCATION 198	Download Code (default = 9999)	
LOCATION 199	Maintenance Code (default = 8888)	49
LOCATIONS 201 - 208	Partition Zone Allocation	50
LOCATIONS 211 - 218	Partition Arm Options (Partitions 1 – 8)	51
LOCATIONS 221 - 228	Extra Partition Options (Partitions 1 - 8)	53
LOCATION 230	Exit Delay Period (default = 0030)	
LOCATION 231	Primary Entry Delay Period (default = 0030)	54
LOCATION 232	Secondary Entry Delay Period (default = 0030)	
LOCATION 240	Keypad Partition (default = Partition 1)	54
LOCATION 241	Keypad Display Start Zone (default = Zone 1)	55
LOCATION 242	Keypad Zone Number (default = 0 i.e. Disabled)	
LOCATION 243	View Keypad ID	55
LOCATIONS 251 - 258	Keypad Options	56
LOCATION 300	Global Reporting Code 1	57
LOCATION 301	Global Reporting Code 2	58
LOCATION 303	Global Reporting Code 4	
LOCATIONS 304 - 307	Zone Alarm Reporting Code	59
LOCATIONS 308 - 311	Zone Alarm Restoral Reporting Code	60
LOCATIONS 312 - 315	Zone Tamper Reporting Code	60
LOCATIONS 316 - 319	Zone Tamper Restore Reporting Code	61
LOCATIONS 320 - 323	Zone Bypass Reporting Code	
LOCATIONS 324 - 327	Zone Force Arm Reporting Code	62
LOCATIONS 328 - 331	Zone Swinger Shutdown Reporting Code	62
LOCATIONS 332 - 335	Zone Swinger Shutdown Restore Reporting Code	63
LOCATION 336	Duress Reporting Code	
LOCATION 337	Keypad Panic Reporting Code	
LOCATION 338	Fire Reporting Code	
LOCATION 339	Medical Reporting Code	
LOCATION 340	Keypad Lockout Reporting Code	65
LOCATIONS 342 - 349	Close Reporting Code	65
LOCATIONS 350 - 357	Stay Close Reporting Code	
LOCATIONS 358 - 365	Open Reporting Code	
LOCATIONS 366 - 373	Siren Cancel Reporting Codes	
LOCATION 380	Clear Programmable Onboard Outputs on Disarming	
LOCATIONS 381 - 386	Clear Programmable Zone Expander Outputs on Disarming	
LOCATION 389	Clear Programmable Keypad Outputs on Disarming	68
LOCATIONS 390 – 414	Partition Programmable Output Events	
LOCATIONS 415 - 422	Zone Programmable Output Events	
LOCATIONS 423 - 426	Global Programmable Output Events	72
LOCATION 428	Onboard Output Pulse Time (default = 0002)	74
LOCATION 429 - 434	Zone Expander Output Pulse Time (default = 0002)	
LOCATION 437	Keypad Output Pulse Time (default = 0002)	
LOCATION 438	Onboard Output ON Time (default = 2400)	
LOCATION 439 - 444	Zone Expander Output ON Time (default = 2400)	
LOCATION 447	Keypad Output ON Time (default = 2400)	75
LOCATION 448	Onboard Output OFF Time (default = 2400)	75
LOCATION 449 - 454	Zone Expander Output OFF Time (default = 2400)	75
LOCATIONS 457	Keypad Output OFF Time (default = 2400)	
LOCATIONS 458 - 498	Output On/Off Days	
LOCATIONS 501 – 564	Split Reporting Zones 1 - 64	/ B

LOCATION 571	Global Split Reporting 1	79
LOCATION 572	Global Split Reporting 2	80
LOCATION 573	Global Split Reporting 3	
LOCATION 574	Global Split Reporting 4	
LOCATIONS 581 - 588	Split Reporting Partitions 1-8	83

Index

2

24 Hour Alarm Zone	24
Α	
AC Fail / Restore Reporting Delay Alarm Reporting Code Alarm Restoral Reporting Code Arm Stay Arm/Disarm Zone Auto Arm Days Auto Arm Delay Auto Arm Time Auto Disarm Time Auto Test Interval Auto Test Time	59 60 44 24 47 48 47 48 48 35
Battery Bitmapped Location Box Tamper Bypass Reporting Code	18, 21, 95 12, 28, 30, 73, 79, 81
C Call-back Phone Number Clear Programmable Onboard Outputs on Disarming Close Reporting Code Communication Delay Contact ID Cross-zone Count Cross-zone Delay Timer Cross-zoning	
Damaged Keypad Daylight Saving Default Keypad Partition Defaulting Keypads Devices (Enrolling) Disabled Zone Download Code. Download Software Dual Reporting Duress Reporting Code (Explanation)	
Earth End-of-Line Resistors. Engineer Reset (Explanation) Enrolling Keypads. Entering Program Mode. Entry Delay	

Exit Delay Exit Delay Period	
Follower Zone	
	G
Global Options	
Hardware Default Switch	H13
	I
Installer Code	
	K
Keypad Fire Reporting Code (Explanation)	
Keypad Medical Reporting Code (Explanation) Keypad Options	
Keypad Setup (Individual) Keypad Sleep Delay	
Key-switch	L 13, 24, 51, 52
log 300 2.1011 25g	M
Mains Failure	
	N
Number of Rings to Answer	O
Open Reporting Code	
	24

Р	
Pania/Priority Zana	24
Panic/Priority Zone Partition Options	
Partition Programmable Outputs	
Peripheral Devices	12, 28, 30
Primary Account Code (Partition Setup)	
Primary Communicator Format	
Primary Entry Delay Period Primary Entry/Exit Zone	
Programmable Outputs	
Programmable Zone Loop Response Time	
Programming a Bitmapped Location	95
Programming Extended Locations	
Programming Location Summary	
Programming Standard Locations	19, 95
Q	
<u>u</u>	
Quick Arm (Explanation)	51
R	
Radio Transmitter Connection	
Remote Control Receiver	
Remote Receiver	
Replacing a Damaged Keypad Device	,
Reporting Options	
resistors	12, 13
<u> </u>	
Schedule OFF Time	76
Secondary Account Code (Partition Setup)	
Secondary Communicator Format	
Secondary Entry/Exit Zone	
Silent Zone	*
Siren Cancel Reporting Code	,
Siren Delay	
Siren Toot on Away Arm / Disarm (Explanation)	
Stay Close Reporting Code	
Stay Mode	
Stay Profile Stay Zone	
Swinger Shutdown	
Swinger Shutdown Reporting Code	
Swinger Shutdown Restore Reporting Code	
Т	
Tamper by Zone	
Tamper Reporting Code	
Tamper Restore Reporting Code	

 Tamper Zone
 24, 69

 Telephone Communicator - Connecting
 12

 Transformer
 12

 Trouble Display
 22, 29

Warning Zone	24 11, 14
Z	
Zone Buzz	44

Cross Reference Lookup

Arming / Disarming			
	Basic Setup	Location	18
	Advanced Setup	Locations Locations	
Communic	cations Basic Setup	Locations	51 54
	basic detup	Locations	
	41	Locations	
	Advanced Setup	Locations	41 – 50
<u>Daylight Savings</u>			
	Basic Setup	Locations	25 – 31
<u>General</u>			
	Basic Setup	Locations Location	14 – 16 23
	Advanced Setup	Locations	
		Locations	300 – 303
<u>Keypads</u>	Basic Setup	Locations	20 – 22
	'	Locations	240 – 243
	Advanced Setup	Locations	251 – 258
No Movement			
	Advanced Setup	Locations	171 – 176
Outputs			
	Basic Setup	Locations	
		Location Locations	389 415 – 422
		Locations	
	Advanced Setup	Locations	
		Locations Locations	
		Locations	
		Locations	447 – 454
		Location	457
<u>Partitions</u>			
	Basic Setup	Locations	
	Advanced Setup	Locations Locations	
Reporting			
	Basic Setup	Locations Locations	
		Locations	
	Advanced Setup	Locations	
		Locations	342 – 373
Security			
Zones	Basic Setup	Locations	197 – 199
	Basic Setup	Locations	1 – 8
		Locations	
	Advanced Setup	Locations Locations	
	Advanced Detap	Locations	11-13

Programming Quick Reference Guide

Entering Program Mode

- [#] [INSTALLER CODE] [*] to enter program mode.
- A long beep will confirm entry.
- The READY LED will flash.

Programming Standard Locations

- The panel is in program mode the READY LED is flashing.
- [LOCATION NUMBER] [*]
 - The READY LED is solid on, and the AWAY LED will flash.
- Either [NEW DATA] [*] or [#] to exit.
- If data is entered, a long beep will confirm entry.
- In both instances, the READY LED will to flash and the AWAY LED will turn off.
- [#] to exit.
- The READY LED will stop flashing.
- The panel is now in standby mode.

Programming Extended Locations with Strings

- Panel is in program mode the READY LED is flashing.
- [LOCATION NUMBER] [*]
- The READY LED is solid on, and the ARM and AWAY LEDs will flash.
- [STRING] [*]
- The ARM and AWAY LEDs turn off, and the READY LED will flash.
- If you do not want to change data press [#].
- The READY LED will continue to flash, whilst the ARM and AWAY LEDs turn off.
- [#] to exit.
- The READY LED will stop flashing.
- The panel is now in standby mode.

Programming Extended Locations with Sub-locations

- Panel is in program mode the READY LED is flashing.
- [LOCATION NUMBER] [*]
- The READY LED is solid on, and the ARM and AWAY LEDs will flash.
- [SUB-LOCATION NUMBER] [*]
- The READY and ARM are solid on, and AWAY is flashing.
- [NEW DATA] [*]
- The READY LED is solid on, and the ARM and AWAY LEDs will flash.
- [#] if you do not wish to make changes.
- The READY is flashing, and the ARM and AWAY LEDs turn off.
- [#] to exit current location.
- The READY is flashing, and the ARM and AWAY LEDs turn off.
- [#] to exit.
- The READY LED will stop flashing.
- The panel is now in standby mode.

Programming a Bitmapped Location

- Panel is in program mode the READY LED is flashing.
- [LOCATION NUMBER] [*]
- The READY LED is solid, and the AWAY LED flashes.
- [#] to exit current location.
- READY is flashing.
 - [#] to exit.
- The READY LED will stop flashing.
- The panel is now in standby mode.

Warranty

Inhep Electronics Holdings (Pty) Ltd guarantees all IDS Control Panels against defective parts and workmanship for 24 months from date of purchase. Inhep Electronics Holdings shall, at its option, repair or replace the defective equipment upon the return of such equipment to any Inhep Electronics Holdings branch. This warranty applies ONLY to defects in components and workmanship and NOT to damage due to causes beyond the control of Inhep Electronics Holdings, such as incorrect voltage, lightning damage, mechanical shock, water damage, fire damage, or damage arising out of abuse and improper application of the equipment.

NOTE: Wherever possible, return only the PCB to Inhep Electronics Holdings service Centres.

DO NOT return the metal enclosure.

The IDS X64 is a product of IDS (Inhep Digital Security)
and is manufactured by
Inhep Electronics Holdings (Pty) Ltd

WARNING

For safety reasons, only connect equipment with a telecommunications compliance label. This includes customer equipment previously labelled permitted or certified.

Help Desk Number: 0860 705137*

*Please note that this is NOT a toll free number

91 Escom Road • New Germany • 3610 • South Africa P 0 Box 738 • New Germany • 3620 • South Africa Tet: +27 (0)31 705 1373 • Fax: +27 (0)31 705 4445 e-mail: info@inhep.com • www.inhep.com

